Metrics
aisteer360.evaluation.metrics.base
Metric
Bases: ABC
Base-class for evaluation metrics.
Provides a standardized interface for computing evaluation scores on model-generated responses. Subclasses should
define their specific scoring logic in compute()
and can accept additional configuration through constructor
arguments stored in extras
.
Source code in aisteer360/evaluation/metrics/base.py
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
|
extras = extras
instance-attribute
name = self.__class__.__name__
instance-attribute
compute(responses, prompts=None, **kwargs)
abstractmethod
Base compute method.
Source code in aisteer360/evaluation/metrics/base.py
21 22 23 24 25 26 27 28 29 |
|
aisteer360.evaluation.metrics.base_judge
LLMJudgeMetric
Bases: Metric
Base class for LLM-as-a-judge evaluation metrics.
Leverages a language model to evaluate the quality of generated text responses according to customized (natural language) criteria. The judge model evaluates each response (optionally with respect to an associated prompt and context) and returns numerical scores within a specified range. When multiple samples are generated per prompt (via num_return_sequences), scores are averaged to improve reliability.
Subclasses should define their specific evaluation criteria by providing a prompt_template
that instructs the
judge model how to score responses. The template should use placeholders {response}, {lower_bound}, and
{upper_bound} (and optionally {prompt} and {context}). Subclasses typically override __init__()
to set their
specific prompt template and scoring scale (e.g., see metrics.generic.relevance
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_or_id
|
str | PreTrainedModel
|
HuggingFace model ID or loaded model instance to use as the judge. If string, the model will be loaded automatically. |
required |
prompt_template
|
str
|
Template string for evaluation prompts. Should contain placeholders for {response}, {lower_bound}, {upper_bound}, and optionally {prompt}, {context}. The formatted prompt will be passed to the judge model. |
required |
tokenizer
|
Any | None
|
Tokenizer for the judge model. If None, will be loaded from the model ID. Required if passing a PreTrainedModel instance. |
None
|
device
|
str | None
|
Device for model inference ('cuda', 'mps', 'cpu'). Defaults to GPU if available, otherwise CPU. |
None
|
scale
|
tuple[float, float]
|
Score range as (min, max) tuple. Scores outside this range will be clamped. Defaults to (1, 5). |
(1, 5)
|
batch_size
|
int
|
Number of prompts to process simultaneously. Defaults to 8. |
8
|
max_retries
|
int
|
Maximum retry attempts when score parsing fails. Defaults to 5. |
5
|
gen_kwargs
|
dict[str, Any] | None
|
Generation parameters passed to the model. |
None
|
Source code in aisteer360/evaluation/metrics/base_judge.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
base_prompt_template = prompt_template.strip()
instance-attribute
batch_size = batch_size
instance-attribute
device = device or ('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
instance-attribute
extras = extras
instance-attribute
format_instructions = self.output_parser.get_format_instructions()
instance-attribute
max_retries = max_retries
instance-attribute
model = AutoModelForCausalLM.from_pretrained(model_or_id)
instance-attribute
name = self.__class__.__name__
instance-attribute
num_return_sequences = int(gen_kwargs.pop('num_return_sequences', 1))
instance-attribute
pipeline = TextGenerationPipeline(model=(self.model), tokenizer=(self.tokenizer))
instance-attribute
scale = scale
instance-attribute
tokenizer = tokenizer or AutoTokenizer.from_pretrained(model_or_id)
instance-attribute
use_chat = hasattr(self.tokenizer, 'apply_chat_template') and self.tokenizer.chat_template is not None
instance-attribute
compute(responses, prompts=None, **kwargs)
Compute LLM judge scores for a list of responses.
Evaluates each response using the configured judge model and prompt template. Scores are averaged when multiple
samples are generated per response (via num_return_sequences
).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
responses
|
list[str]
|
List of text responses to evaluate. |
required |
prompts
|
list[str] | None
|
Optional list of prompts corresponding to each response. If provided, must be the same length as responses. These prompts can be referenced in the prompt_template using the {prompt} placeholder. |
None
|
**kwargs
|
Any
|
Additional keyword arguments (currently unused). |
{}
|
Returns:
Type | Description |
---|---|
dict[str, float | list[float]]
|
Score statistics containing:
|
Raises:
Type | Description |
---|---|
AssertionError
|
If prompts is provided but has different length than responses. |
Source code in aisteer360/evaluation/metrics/base_judge.py
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
|
build_structured_parser(scale)
Build a StructuredOutputParser and parsing function for rating predictions.
Constructs a StructuredOutputParser
configured with a single ResponseSchema
that expects a float score within
the specified scale range. It also returns a parsing function that extracts and validates the score from text,
ensuring the result is clamped between the provided bounds.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scale
|
tuple[float, float]
|
A |
required |
Source code in aisteer360/evaluation/metrics/base_judge.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|