run_tc module

Fine-tuning the library models for named entity recognition on CoNLL-2003 (Bert or Roberta).

class run_tc.DataTrainingArguments(dataset_name: Optional[str] = None, dataset_config_name: Optional[str] = None, train_file: Optional[str] = None, validation_file: Optional[str] = None, test_file: Optional[str] = None, text_column_name: Optional[str] = None, label_column_name: Optional[str] = None, max_seq_length: int = 512, pad_to_max_length: bool = False, overwrite_cache: bool = False, preprocessing_num_workers: Optional[int] = None, task_name: str = 'ner', early_stop: bool = False)[source]

Bases: object

Arguments pertaining to what data we are going to input our model for training and eval.

dataset_config_name: Optional[str] = None
dataset_name: Optional[str] = None
early_stop: bool = False
label_column_name: Optional[str] = None
max_seq_length: int = 512
overwrite_cache: bool = False
pad_to_max_length: bool = False
preprocessing_num_workers: Optional[int] = None
task_name: str = 'ner'
test_file: Optional[str] = None
text_column_name: Optional[str] = None
train_file: Optional[str] = None
validation_file: Optional[str] = None
class run_tc.ModelArguments(model_name_or_path: str, config_name: Optional[str] = None, tokenizer_name: Optional[str] = None, use_fast: bool = False, cache_dir: Optional[str] = None, log_dir: Optional[str] = None, use_auth_token: bool = False)[source]

Bases: object

Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.

cache_dir: Optional[str] = None
config_name: Optional[str] = None
log_dir: Optional[str] = None
model_name_or_path: str
tokenizer_name: Optional[str] = None
use_auth_token: bool = False
use_fast: bool = False
run_tc.main(args)[source]