DecisionTreeLearners
Creates an API wrapper for DecisionTrees for pipeline workflow.
Index
TSML.DecisionTreeLearners.AdaboostTSML.DecisionTreeLearners.PrunedTreeTSML.DecisionTreeLearners.RandomForest
AutoDocs
Adaboost(
Dict(
:output => :class,
:num_iterations => 7
)
)Adaboosted decision tree stumps. See DecisionTree.jl's documentation
Hyperparameters:
:num_iterations=> 7 (number of iterations of AdaBoost)
Implements fit!, transform!
PrunedTree(
Dict(
:purity_threshold => 1.0,
:max_depth => -1,
:min_samples_leaf => 1,
:min_samples_split => 2,
:min_purity_increase => 0.0
)
)Decision tree classifier. See DecisionTree.jl's documentation
Hyperparmeters:
:purity_threshold=> 1.0 (merge leaves having >=thresh combined purity):max_depth=> -1 (maximum depth of the decision tree):min_samples_leaf=> 1 (the minimum number of samples each leaf needs to have):min_samples_split=> 2 (the minimum number of samples in needed for a split):min_purity_increase=> 0.0 (minimum purity needed for a split)
Implements fit!, transform!
RandomForest(
Dict(
:output => :class,
:num_subfeatures => 0,
:num_trees => 10,
:partial_sampling => 0.7,
:max_depth => -1
)
)Random forest classification. See DecisionTree.jl's documentation
Hyperparmeters:
:num_subfeatures=> 0 (number of features to consider at random per split):num_trees=> 10 (number of trees to train):partial_sampling=> 0.7 (fraction of samples to train each tree on):max_depth=> -1 (maximum depth of the decision trees):min_samples_leaf=> 1 (the minimum number of samples each leaf needs to have):min_samples_split=> 2 (the minimum number of samples in needed for a split):min_purity_increase=> 0.0 (minimum purity needed for a split)
Implements fit!, transform!
TSML.TSMLTypes.fit! — Method.fit!(adaboost::Adaboost, features::T, labels::Vector) where {T<:Union{Vector,Matrix,DataFrame}}Function to optimize the hyperparameters of Adaboost instance.
TSML.TSMLTypes.fit! — Method.fit!(tree::PrunedTree, features::T, labels::Vector) where {T<:Union{Vector,Matrix,DataFrame}}Function to optimize the hyperparameters of PrunedTree instance.
TSML.TSMLTypes.fit! — Method.fit!(forest::RandomForest, features::T, labels::Vector) where {T<:Union{Vector,Matrix,DataFrame}}Function to optimize the parameters of the RandomForest instance.
TSML.TSMLTypes.transform! — Method.transform!(adaboost::Adaboost, features::T) where {T<:Union{Vector,Matrix,DataFrame}}Function to predict using the optimized hyperparameters of the trained Adaboost instance.
TSML.TSMLTypes.transform! — Method.transform!(tree::PrundTree, features::T) where {T<:Union{Vector,Matrix,DataFrame}}Function to predict using the optimized hyperparameters of the trained PrunedTree instance.
TSML.TSMLTypes.transform! — Method.transform!(forest::RandomForest, features::T) where {T<:Union{Vector,Matrix,DataFrame}}Function to predict using the optimized hyperparameters of the trained RandomForest instance.