ulkb.Theory.top#

Theory.top = begin theory type_constructor bool 0 python_type_alias bool (𝔹 : *) BoolType type_constructor fun 2 right constant (equal : a a 𝔹) definition (true : 𝔹) (𝜆 p p) = (𝜆 p p) definition (and : 𝔹 𝔹 𝔹) 𝜆 p q (𝜆 f f p q) = (𝜆 f f ⊤) definition (implies : 𝔹 𝔹 𝔹) 𝜆 p q p q p definition (forall : (a 𝔹) 𝔹) 𝜆 p p = (𝜆 x ⊤) definition (false : 𝔹) p, p definition (not : 𝔹 𝔹) 𝜆 p p definition (or : 𝔹 𝔹 𝔹) 𝜆 p q r, (p r) (q r) r definition (exists : (a 𝔹) 𝔹) 𝜆 p q, (∀ x, p x q) q definition (exists1 : (a 𝔹) 𝔹) 𝜆 p (exists p) (∀ x y, p x p y x = y) type_constructor int 0 python_type_alias int (ℤ : *) IntType type_constructor real 0 python_type_alias float (ℝ : *) RealType type_constructor str 0 python_type_alias str (str : *) StrType end theory#

The top theory.