![_images/dqs.png](_images/dqs.png)
Documentation of DQS
DQS is a neural network toolkit for distribution regression, quantile regression, and survival analysis. This toolkit provides various classes and methods useful for predicting probability distribution. This toolkit is currently available for PyTorch.
![_images/predict_distribution.png](_images/predict_distribution.png)
How to install
pip install dqs
Overview:
API Reference:
- dqs.torch.distribution.DistributionLinear
- dqs.torch.layer.HierarchicalSoftmax
- dqs.torch.layer.SigSoftmax
- dqs.torch.loss.Brier
- dqs.torch.loss.CensoredBrier
- dqs.torch.loss.CensoredNegativeLoglikelihood
- dqs.torch.loss.CensoredRankedProbabilityScore
- dqs.torch.loss.NegativeLogLikelihood
- dqs.torch.loss.Pinball
- dqs.torch.loss.Portnoy
- dqs.torch.loss.RankedProbabilityScore
Citation
Please consider citing this paper: H. Yanagisawa, “Proper Scoring Rules for Survival Analysis,” ICML 2023 (to appear).