
Documentation of DQS
DQS is a neural network toolkit for distribution regression, quantile regression, and survival analysis. This toolkit provides various classes and methods useful for predicting probability distribution. This toolkit is currently available for PyTorch.

How to install
pip install dqs
Overview:
API Reference:
- dqs.torch.distribution.DistributionLinear
- dqs.torch.layer.HierarchicalSoftmax
- dqs.torch.layer.SigSoftmax
- dqs.torch.loss.Brier
- dqs.torch.loss.CensoredBrier
- dqs.torch.loss.CensoredNegativeLoglikelihood
- dqs.torch.loss.CensoredRankedProbabilityScore
- dqs.torch.loss.NegativeLogLikelihood
- dqs.torch.loss.Pinball
- dqs.torch.loss.Portnoy
- dqs.torch.loss.RankedProbabilityScore
Citation
Please consider citing this paper: H. Yanagisawa, “Proper Scoring Rules for Survival Analysis,” ICML 2023 (to appear).