.. DQS documentation master file, created by sphinx-quickstart on Thu Oct 6 14:33:51 2022. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. .. image:: ./dqs.png :align: center | Documentation of DQS ================================================================================================================ .. role:: bluetext DQS is a neural network toolkit for distribution regression, quantile regression, and survival analysis. This toolkit provides various classes and methods useful for predicting probability distribution. This toolkit is currently available for PyTorch. .. image:: ./predict_distribution.png :width: 400 How to install ------------------ .. code-block:: shell pip install dqs .. toctree:: :maxdepth: 1 :caption: Overview: howtouse predicting_distribution tutorial_torch_cnll .. toctree:: :maxdepth: 1 :caption: API Reference: torch_distribution_DistributionLinear torch_layer_HierarchicalSoftmax torch_layer_SigSoftmax torch_loss_Brier torch_loss_CensoredBrier torch_loss_CensoredNegativeLogLikelihood torch_loss_CensoredRankedProbabilityScore torch_loss_NegativeLogLikelihood torch_loss_Pinball torch_loss_Portnoy torch_loss_RankedProbabilityScore Citation ------------------ Please consider citing this paper: H. Yanagisawa, "Proper Scoring Rules for Survival Analysis," ICML 2023 (to appear).