dqs.torch.loss.RankedProbabilityScore ================================================ This class is used to compute ranked probability score. .. code-block:: python class RankedProbabilityScore( distribution, loss_boundaries) Parameters: =================== ================ =================================================================================== Args Type Description =================== ================ =================================================================================== distribution dqs.distribution Object from dqs.distribution package to store probability distribution. boundaries list (float) Boundaries used in ranked probability score. =================== ================ =================================================================================== loss(pred, y, e=None) --------------------------------- Parameters: =================== ================ =================================================================================== Args Type Description =================== ================ =================================================================================== pred Tensor (float) Estimated probability distribution to be evaluated. y Tensor (float) One-dimensional tensor to represent labels from a dataset. e Tensor (bool) One-dimensional tensor to represent censored (False) or uncensored (True). =================== ================ =================================================================================== Return type: Tensor representing a single float. Example --------------------------------- The following code computes the ranked probability score based on estimated probability distributions (``pred``) and labels (``y``). .. code-block:: python boundaries = torch.linspace(0.0, 10.0, 11) dist = dqs.distribution.DistributionLinear(boundaries) loss_fn = dqs.loss.RankedProbabilityScore(dist, boundaries) pred = torch.Tensor([[0.4,0.6],[0.2,0.8]]) y = torch.Tensor([5.0,5.0]) loss = loss_fn.loss(pred, y)