Tool Implementations
Overview
The implementations directory contains concrete tool implementations that extend the base tool classes to provide specific functionalities. Each tool is designed to handle particular use cases while adhering to the common interfaces defined in the base classes.
Provided Example Tools
RAG Tool
The RAG (Retrieval-Augmented Generation) tool enables context-aware responses by incorporating information from external knowledge bases.
Key Features:
- Dynamic knowledge retrieval
- Contextual response generation
- Configurable similarity thresholds
- Support for multiple knowledge base formats
Weather Tool
The Weather tool provides access to weather information through integration with weather service APIs.
Key Features:
- Current weather conditions
- Weather forecasts
- Location-based queries
- Multiple unit support (metric/imperial)
Wikipedia Tool
The Wikipedia tool enables direct access to Wikipedia's vast knowledge base through its API integration.
Key Features:
- Article retrieval and summarization
- Cross-reference link extraction
- Multi-language support
- Search functionality with relevance ranking
DuckDuckGo Search Tool
The DuckDuckGo Search Tool provides web search capabilities through DuckDuckGo's search engine.
Key Features:
- Web search for up-to-date information
- Result extraction with titles, snippets, and URLs
- Markdown-formatted search results
- Configurable result limit
- Robust error handling
Implementation Guidelines
When creating new tool implementations, follow these guidelines:
-
Inheritance
- Extend either
BaseTool
orBaseRESTTool
- Implement all required abstract methods
- Call
super().__init__()
in constructor
- Extend either
-
Stream Context Integration: StreamContext enables tools to access and interact with the conversation session state. It provides:
- Access to conversation history and message buffers for context-aware processing and responses
- Tool definitions and current tool calls to coordinate complex multistep operations
- Session metadata and configuration for customized tool behavior
- LLM factory methods for dynamic model access and generation
- For detailed documentation, see Agent Data Models.
-
Error Handling
- Use appropriate exception classes
- Provide meaningful error messages
- Handle API-specific error cases
- Include logging
-
Configuration
- Use environment variables for sensitive data
- Make tool behavior configurable
- Document all configuration options
-
Response Format
- Return structured data
- Follow consistent response patterns
- Include status indicators
- Provide error details when needed
Creating New Tools
Tool Configuration Example
Below is an example of how tools are configured in the agent.yaml file:
tools_config:
# Weather API Integration
- name: "weather"
endpoint_url: "https://api.openweathermap.org/data/2.5/weather"
api_key_env: "OWM_API_KEY"
# Wikipedia Summary Tool
- name: "wikipedia"
endpoint_url: "https://{lang}.wikipedia.org/api/rest_v1/page/summary/{encoded_query}"
# DuckDuckGo Search Tool
- name: "duckduckgo_search"
# RAG Tool with Elasticsearch
- name: "medicare_search"
connector_config:
connector_type: elasticsearch
index_name: my_index
api_key_env: ES_API_KEY
endpoint_env: ES_ENDPOINT
top_k: 5
# Additional configuration options...
The configuration specifies which tools should be registered and provides any necessary configuration parameters for each tool.
Registration Process
Tools are registered through the Flexo agent.yaml
configuration file. Here's the step-by-step guide:
-
Create Tool Class File
- Create a new Python file in the
implementations/
directory - Import required base classes:
from src.tools.core.base_tool import BaseTool # or BaseRESTTool
- Create a new Python file in the
-
Define Your Tool Class
- Create a class that extends the appropriate base class
- Define a unique
name
class attribute (this must match the tool name in your config)class MyTool(BaseTool): name = "my_tool" # Required: unique identifier for the tool def __init__(self, config: Optional[Dict] = None): super().__init__(config=config) self.description = 'Description of what your tool does'
-
Add Tool Configuration to agent.yaml
- Add your tool configuration under the
tools_config
section:tools_config: # Other tools... - name: "my_tool" # Optional tool-specific configuration endpoint_url: "https://api.example.com/v1/endpoint" api_key_env: "MY_TOOL_API_KEY"
- Add your tool configuration under the
-
Implementation Requirements
- Implement all required abstract methods from the base class
- Add error handling and logging
- Include documentation
- Write unit tests (recommended)
Example Implementation
Here's an example using the Weather Tool:
Python Implementation
from typing import Optional, Dict
from src.tools.core.base_rest_tool import BaseRESTTool
class WeatherTool(BaseRESTTool):
name = "weather" # Must match the name in tools_config
def __init__(self, config: Optional[Dict] = None):
super().__init__(config=config)
self.description = 'Get current weather information for a location'
self.strict = False
# Implement required methods...
Configuration in agent.yaml
tools_config:
- name: "weather"
endpoint_url: "https://api.openweathermap.org/data/2.5/weather"
api_key_env: "OWM_API_KEY"
Configuration Options
The tools configuration in agent.yaml supports various options depending on the tool type:
- Basic API Tools: Configure endpoints, API keys, and other connection parameters
- RAG Tools: Specify connector configurations, vector databases, and search parameters
- Hidden Tools: Tools can be made available only to the system by excluding them from the
tools_config
Implementation Checklist
- ✅ Create new file in implementations directory
- ✅ Import appropriate base class
- ✅ Define unique name class attribute (must match configuration)
- ✅ Implement required methods
- ✅ Add documentation
- ✅ Add tool to your
tools_config
list inagent.yaml
- ✅ Write unit tests (recommended)
Quick Links:
- See Example RAG Tool (medicare handbook)
- See Example API tool (weather)
- See Example API tool (wikipedia)
- See Example API tool (duckduckgo search)