Auditors#
SenSR Auditor#
- class inFairness.auditor.SenSRAuditor(loss_fn, distance_x, num_steps, lr, max_noise=0.1, min_noise=-0.1)[source]#
SenSR Auditor implements the functionality to generate worst-case examples by solving the following optimization equation:
\[x_{t_b}^* \gets arg\max_{x \in X} l((x,y_{t_b}),h) - \lambda d_x^2(x_{t_b},x)\]Proposed in Training individually fair ML models with sensitive subspace robustness
- Parameters:
loss_fn (torch.nn.Module) – Loss function
distance_x (inFairness.distances.Distance) – Distance metric in the input space
num_steps (int) – Number of update steps should the auditor perform to find worst-case examples
lr (float) – Learning rate
- audit(network, X_audit, Y_audit, audit_threshold=None, lambda_param=None, confidence=0.95, optimizer=None)[source]#
Audit a model for individual fairness
- Parameters:
network (torch.nn.Module) – PyTorch network model
X_audit (torch.Tensor) – Auditing data samples. Shape: (B, *)
Y_audit (torch.Tensor) – Auditing data samples. Shape: (B)
loss_fn (torch.nn.Module) – Loss function
audit_threshold (float, optional) – Auditing threshold to consider a model individually fair or not If audit_threshold is specified, the audit procedure determines if the model is individually fair or not. If audit_threshold is not specified, the audit procedure simply returns the mean and lower bound of loss ratio, leaving the determination of models’ fairness to the user. Default=None
lambda_param (float) – Lambda weighting parameter as defined in the equation above
confidence (float, optional) – Confidence value. Default = 0.95
optimizer (torch.optim.Optimizer, optional) – PyTorch Optimizer object. Default: torch.optim.SGD
- Returns:
audit_response – Audit response containing test statistics
- Return type:
- generate_worst_case_examples(network, x, y, lambda_param, optimizer=None)[source]#
Generate worst case example given the input data sample batch x
- Parameters:
network (torch.nn.Module) – PyTorch network model
x (torch.Tensor) – Batch of input datapoints
y (torch.Tensor) – Batch of output datapoints
lambda_param (float) – Lambda weighting parameter as defined in the equation above
optimizer (torch.optim.Optimizer, optional) – PyTorch Optimizer object
- Returns:
X_worst – Worst case examples for the provided input datapoints
- Return type:
SenSeI Auditor#
- class inFairness.auditor.SenSeIAuditor(distance_x, distance_y, num_steps, lr, max_noise=0.1, min_noise=-0.1)[source]#
SenSeI Auditor implements the functionality to generate worst-case examples by solving the following optimization equation:
\[x_{t_b}' \gets arg\max_{x' \in X}\{d_{Y}(h_{\theta_t}(X_{t_b}),h_{\theta_t}(x')) - \lambda_t d_{X}(X_{t_b},x')\}\]Proposed in SenSeI: Sensitive Set Invariance for Enforcing Individual Fairness
- Parameters:
distance_x (inFairness.distances.Distance) – Distance metric in the input space
distance_y (inFairness.distances.Distance) – Distance metric in the output space
num_steps (int) – Number of update steps should the auditor perform to find worst-case examples
lr (float) – Learning rate
- audit(network, X_audit, Y_audit, loss_fn, audit_threshold=None, lambda_param=None, confidence=0.95, optimizer=None)[source]#
Audit a model for individual fairness
- Parameters:
network (torch.nn.Module) – PyTorch network model
X_audit (torch.Tensor) – Auditing data samples. Shape: (B, *)
Y_audit (torch.Tensor) – Auditing data samples. Shape: (B)
loss_fn (torch.nn.Module) – Loss function
audit_threshold (float, optional) – Auditing threshold to consider a model individually fair or not If audit_threshold is specified, the audit procedure determines if the model is individually fair or not. If audit_threshold is not specified, the audit procedure simply returns the mean and lower bound of loss ratio, leaving the determination of models’ fairness to the user. Default=None
lambda_param (float) – Lambda weighting parameter as defined in the equation above
confidence (float, optional) – Confidence value. Default = 0.95
optimizer (torch.optim.Optimizer, optional) – PyTorch Optimizer object. Default: torch.optim.SGD
- Returns:
audit_response – Audit response containing test statistics
- Return type:
- generate_worst_case_examples(network, x, lambda_param, optimizer=None)[source]#
Generate worst case example given the input data sample batch x
- Parameters:
network (torch.nn.Module) – PyTorch network model
x (torch.Tensor) – Batch of input datapoints
lambda_param (float) – Lambda weighting parameter as defined in the equation above
optimizer (torch.optim.Optimizer, optional) – PyTorch Optimizer object. Default: torch.optim.Adam
- Returns:
X_worst – Worst case examples for the provided input datapoints
- Return type:
SenSTIR Auditor#
- class inFairness.auditor.SenSTIRAuditor(distance_x: MahalanobisDistances, distance_y: MahalanobisDistances, num_steps: int, lr: float, max_noise: float = 0.1, min_noise: float = -0.1)[source]#
SenSTIR Auditor generates worst-case examples by solving the following optimization problem:
\[q^{'} \gets arg\max_{q^{'}}\{||h_{\theta_t}(q),h_{\theta_t}(q^{'})||_{2}^{2} - \lambda_t d_{Q}(q,q^{'})\}\]At a high level, it will find \(q^{'}\) such that it maximizes the score difference, while keeping a fair set distance distance_q with the original query q small.
Proposed in Individually Fair Rankings
- Parameters:
distance_x (inFairness.distances.Distance) – Distance metric in the input space. Should be an instance of
MahalanobisDistance
distance_y (inFairness.distances.Distance) – Distance metric in the output space. Should be an instance of
MahalanobisDistance
num_steps (int) – number of optimization steps taken to produce the worst examples.
lr (float) – learning rate of the optimization
max_noise (float) – range of a uniform distribution determining the initial noise added to q to form q’
min_noise (float) – range of a uniform distribution determining the initial noise added to q to form q’
- generate_worst_case_examples(network, Q, lambda_param, optimizer=None)[source]#
Generate worst case examples given the input sample batch of queries Q (dimensions batch_size,num_items,num_features)
- Parameters:
network (torch.nn.Module) – PyTorch network model that outputs scores per item
Q (torch.Tensor) – tensor with dimensions batch_size, num_items, num_features containing the batch of queries for ranking
lambda_param (torch.float) – Lambda weighting parameter as defined above
optimizer (torch.optim.Optimizer, optional) – Pytorch Optimizer object
- Returns:
q_worst – worst case queries for the provided input queries Q
- Return type: