Plugin Framework SpecificationΒΆ
Version: 1.0 Status: Draft
The MCP Context Forge Plugin Framework provides a comprehensive, production-ready system for extending MCP Gateway functionality through pluggable middleware components. These plugins interpose calls to MCP and agentic components to apply security, AI, business logic, and monitoring capabilities to existing flows. This specification defines the architecture, interfaces, and protocols for developing, deploying, and managing plugins within the MCP ecosystem.
Table of ContentsΒΆ
- Overview
- Architecture
- Plugin Types and Configuration
- Core Components
- Hook System
- Hook Reference Documentation
- External Plugin Integration
- Security and Protection
- Performance Considerations
- Development Guidelines
- Testing
- Platform-Agnostic Design
- Future Extensions
OverviewΒΆ
The plugin framework is designed as a standalone, platform-agnostic ecosystem that can be embedded in any application requiring extensible middleware processing. It enables both native plugins (running in-process) and external plugin integrations (remote MCP servers) through a unified interface. This approach balances performance, security, and operational requirements while providing maximum flexibility for deployment across different environments and platforms.
Design PrinciplesΒΆ
- Platform Agnostic: The Framework is implemented in Python, but external plugins can be implemented in any language of choice.
- Protocol Neutral: Supports multiple transport mechanisms (Streamable HTTP (JSON-RPC), STDIO, SSE), and can be extended to support additional protocols
- MCP Native: Remote plugins are fully compliant MCP servers
- Security First: Comprehensive protection, validation, and isolation
- Production Ready: Built for high-throughput, low-latency environments
- Developer Friendly: Simple APIs with comprehensive tooling
TerminologyΒΆ
- Plugin: A middleware component that processes MCP requests/responses
- Hook: A specific point in the MCP lifecycle where plugins execute
- Native Plugin: Plugin running in-process with the gateway
- External Plugin: Plugin running as a remote MCP server
- Plugin Manager: Core service managing plugin lifecycle and execution
- Plugin Context: Request-scoped state shared between plugins
- Plugin Configuration: YAML-based plugin setup and parameters
FeaturesΒΆ
Legend: β = Completed | π§ = In Progress | π = Planned
Plugin Lifecycle Management
- β Discovery & Loading: Automatically discover and load plugins from configuration
- π Dependency Resolution: Handle plugin dependencies and load order
- β Runtime Control: Enable, disable, or modify plugin behavior without code changes
- β Version Management: Track plugin versions and manage updates
Operational Control
- π§ Environment-Specific Deployment: Different configurations for dev/staging/production
- β Conditional Execution: Run plugins only under specific conditions (tenant, server, user)
- β Priority-Based Orchestration: Control execution order through priority settings
- β Mode-Based Behavior: Switch between enforce/enforce_ignore_error/permissive/disabled modes
Security & Compliance
- β Conditional Execution: Restrict plugin execution to specific users, tools, or servers
- β Audit Trail: Track plugin configuration changes and deployment history
- β Policy Enforcement: Implement organizational security policies through configuration
- π External Service Integration: Securely configure connections to external AI safety services
Performance Optimization
- β Resource Limits: Configure timeouts, memory limits, and execution constraints
- π Selective Loading: Load only necessary plugins to optimize performance
- β Monitoring Integration: Configure metrics collection and health monitoring
- π Caching Strategies: Control plugin result caching and optimization
ArchitectureΒΆ
The plugin framework implements an execution pipeline designed for enterprise-grade performance, security, and reliability.
Component ViewΒΆ
Below is a view of the core components of the plugin system, which extends the gateway request execution pipeline with pre- and post- protocol hooks implemented by plugins.
flowchart TB
subgraph "MCP Client"
Client["MCP Client Application"]
end
subgraph GW["MCP Gateway"]
Gateway["Gateway Core"]
PM["Plugin Manager"]
Executor["Plugin Executor"]
end
subgraph "Plugin Ecosystem"
Native["Native Plugins"]
External["External MCP <br> Plugin Servers"]
end
subgraph "External Services"
AI["AI Safety Services<br>(LlamaGuard, OpenAI)"]
Security["Security Services<br>(Vault, OPA)"]
end
Client --request--> GW
GW --response--> Client
Gateway --> PM
PM --> Executor
Executor --> Native
Executor --> External
External --> AI
External --> Security
style Gateway fill:#e3f2fd
style PM fill:#fff3e0
style Native fill:#e8f5e8
style External fill:#fff8e1
Plugin Types and ConfigurationΒΆ
The plugin configuration system provides a declarative, YAML-based approach to plugin management, deployment, and orchestration.
The configuration system supports both native plugins (running in-process) and external plugins (remote MCP servers), providing a unified interface for managing diverse plugin architectures while maintaining type safety, validation, and operational excellence.
Plugin Deployment PatternsΒΆ
The framework supports two distinct plugin deployment patterns:
Native Plugins (In-Process)ΒΆ
- Execute within the main application process
- Written in Python and extend the base
Plugin
class - Fastest execution with shared memory access
- Examples: regex filters, simple transforms, validation
External Plugins (Remote MCP Servers)ΒΆ
- Standalone MCP servers implementing plugin logic
- Can be written in any language (Python, TypeScript, Go, Rust, etc.)
- Communicate via MCP protocol (Streamable HTTP, STDIO, SSE)
- Examples: OPA filter, LlamaGuard, OpenAI Moderation, custom AI services
Plugin Configuration SchemaΒΆ
Below is an example of a plugin configuration file. A plugin configuration file can configure one or more plugins in a prioritized list as below. Each individual plugin is an instance of the of a plugin class that subclasses the base Plugin
object and implements a set of hooks as listed in the configuration.
# plugins/config.yaml
plugins:
- name: "PIIFilterPlugin" # Unique plugin identifier
kind: "plugins.pii_filter.pii_filter.PIIFilterPlugin" # Plugin class path
description: "Detects and masks PII" # Human-readable description
version: "1.0.0" # Plugin version
author: "Security Team" # Plugin author
hooks: # Hook registration
- "prompt_pre_fetch"
- "tool_pre_invoke"
- "tool_post_invoke"
tags: # Searchable tags
- "security"
- "pii"
- "compliance"
mode: "enforce" # enforce|enforce_ignore_error|permissive|disabled
priority: 50 # Execution priority (lower = higher)
conditions: # Conditional execution
- server_ids: ["prod-server"]
tenant_ids: ["enterprise"]
tools: ["sensitive-tool"]
config: # Plugin-specific configuration
detect_ssn: true
detect_credit_card: true
mask_strategy: "partial"
redaction_text: "[REDACTED]"
# Global plugin settings
plugin_settings:
parallel_execution_within_band: false # Execute same-priority plugins in parallel
plugin_timeout: 30 # Per-plugin timeout (seconds)
fail_on_plugin_error: false # Continue on plugin failures
plugin_health_check_interval: 60 # Health check interval (seconds)
Plugin Configuration AttributesΒΆ
Details of each field are below:
Field | Type | Required | Default | Description | Example Values |
---|---|---|---|---|---|
name | string | Yes | - | Unique plugin identifier within the configuration | "PIIFilterPlugin" , "OpenAIModeration" |
kind | string | Yes | - | Plugin class path for native plugins or "external" for MCP servers | "plugins.pii_filter.pii_filter.PIIFilterPlugin" , "external" |
description | string | null | Human-readable description of plugin functionality | "Detects and masks PII in requests" | |
author | string | null | Plugin author or team responsible for maintenance | "Security Team" , "AI Safety Group" | |
version | string | null | Plugin version for tracking and compatibility | "1.0.0" , "2.3.1-beta" | |
hooks | string[] | [] | List of hook points where plugin executes | ["prompt_pre_fetch", "tool_pre_invoke"] | |
tags | string[] | [] | Searchable tags for plugin categorization | ["security", "pii", "compliance"] | |
mode | string | "enforce" | Plugin execution mode controlling behavior on violations | "enforce" , "enforce_ignore_error" , "permissive" , "disabled" | |
priority | integer | null | Execution priority (lower number = higher priority) | 10 , 50 , 100 | |
conditions | object[] | [] | Conditional execution rules for targeting specific contexts | See Condition Fields below | |
config | object | {} | Plugin-specific configuration parameters | {"detect_ssn": true, "mask_strategy": "partial"} | |
mcp | object | null | External MCP server configuration (required for external plugins) | See MCP Configuration below |
Hook TypesΒΆ
Available hook values for the hooks
field:
Hook Value | Description | Timing |
---|---|---|
"prompt_pre_fetch" | Process prompt requests before template processing | Before prompt template retrieval |
"prompt_post_fetch" | Process prompt responses after template rendering | After prompt template processing |
"tool_pre_invoke" | Process tool calls before execution | Before tool invocation |
"tool_post_invoke" | Process tool results after execution | After tool completion |
"resource_pre_fetch" | Process resource requests before fetching | Before resource retrieval |
"resource_post_fetch" | Process resource content after loading | After resource content loading |
Plugin ModesΒΆ
Available values for the mode
field:
Mode | Behavior | Use Case |
---|---|---|
"enforce" | Block requests when plugin detects violations or errors | Production security plugins, critical compliance checks |
"enforce_ignore_error" | Block on violations but continue on plugin errors | Security plugins that should block violations but not break on technical errors |
"permissive" | Log violations and errors but allow requests to continue | Development environments, monitoring-only plugins |
"disabled" | Plugin is loaded but never executed | Temporary plugin deactivation, maintenance mode |
Condition FieldsΒΆ
The conditions
array contains objects that specify when plugins should execute:
Field | Type | Description | Example |
---|---|---|---|
server_ids | string[] | Execute only for specific virtual server IDs | ["prod-server", "api-gateway"] |
tenant_ids | string[] | Execute only for specific tenant/organization IDs | ["enterprise", "premium-tier"] |
tools | string[] | Execute only for specific tool names | ["file_reader", "web_scraper"] |
prompts | string[] | Execute only for specific prompt names | ["user_prompt", "system_message"] |
resources | string[] | Execute only for specific resource URI patterns | ["https://api.example.com/*"] |
user_patterns | string[] | Execute for users matching regex patterns | ["admin_.*", ".*@company.com"] |
content_types | string[] | Execute for specific content types | ["application/json", "text/plain"] |
MCP Configuration FieldsΒΆ
For external plugins (kind: "external"
), the mcp
object configures the MCP server connection:
Field | Type | Required | Description | Example |
---|---|---|---|---|
proto | string | Yes | MCP transport protocol | "stdio" , "sse" , "streamablehttp" , "websocket" |
url | string | Service URL for HTTP-based transports | "http://openai-plugin:3000/mcp" | |
script | string | Script path for STDIO transport | "/opt/plugins/custom-filter.py" |
Global Plugin SettingsΒΆ
The plugin_settings
object controls framework-wide behavior:
Setting | Type | Default | Description |
---|---|---|---|
parallel_execution_within_band | boolean | false | Execute plugins with same priority in parallel |
plugin_timeout | integer | 30 | Per-plugin timeout in seconds |
fail_on_plugin_error | boolean | false | Stop processing on plugin errors |
plugin_health_check_interval | integer | 60 | Health check interval in seconds |
Plugin ManifestΒΆ
The plugin manifest is a metadata file that provides structured information about a plugin's capabilities, dependencies, and characteristics. This manifest serves multiple purposes in the plugin ecosystem: development guidance, runtime validation, discoverability, and documentation.
Manifest Purpose and UsageΒΆ
The plugin manifest (plugin-manifest.yaml
) is primarily used by:
- Plugin Templates: Bootstrap process uses manifest to generate plugin scaffolding
- Plugin Catalog: Catalogs can provide enhanced search and organization based on manifest information
- Plugin Discovery: Registry systems can index plugins based on manifest metadata
- Documentation Generation: Automated documentation can be generated from manifest content
- Dependency Management: Future versions may use manifest for dependency resolution
- Security and Governance: Future versions may use manifest for specifying security capability requirements and storing signatures
Manifest StructureΒΆ
The plugin manifest follows a structured YAML format that captures comprehensive plugin metadata:
# plugin-manifest.yaml
name: "Advanced PII Filter"
kind: "plugins.pii_filter.pii_filter.PIIFilterPlugin"
description: "Comprehensive PII detection and masking with configurable sensitivity levels"
author: "Security Engineering Team"
version: "2.1.0"
license: "MIT"
homepage: "https://github.com/company/advanced-pii-filter"
repository: "https://github.com/company/advanced-pii-filter.git"
# Plugin capabilities and hook registration
available_hooks:
- "prompt_pre_fetch"
- "prompt_post_fetch"
- "tool_pre_invoke"
- "tool_post_invoke"
- "resource_post_fetch"
# Categorization and discovery
tags:
- "security"
- "pii"
- "compliance"
- "data-protection"
- "gdpr"
# Plugin characteristics
plugin_type: "native" # native | external
language: "python" # python | typescript | go | rust | java
performance_tier: "high" # high | medium | low (expected latency)
# Default configuration template
default_config:
detection_sensitivity: 0.8
masking_strategy: "partial" # partial | full | token
pii_types:
- "ssn"
- "credit_card"
- "email"
- "phone"
compliance_mode: "gdpr" # gdpr | hipaa | pci | custom
log_violations: true
max_content_length: 1048576
# Runtime requirements
requirements:
python_version: ">=3.11"
memory_mb: 64
cpu_cores: 0.5
timeout_seconds: 5
# Dependencies (for external plugins)
dependencies:
- "spacy>=3.4.0"
- "presidio-analyzer>=2.2.0"
- "pydantic>=2.0.0"
# Plugin metadata for advanced features
features:
configurable: true # Plugin accepts runtime configuration
stateful: false # Plugin maintains state between requests
async_capable: true # Plugin supports async execution
external_dependencies: true # Plugin requires external services
multi_tenant: true # Plugin supports tenant isolation
# Documentation and examples
documentation:
readme: "README.md"
examples: "examples/"
api_docs: "docs/api.md"
# Testing and quality assurance
testing:
unit_tests: "tests/unit/"
integration_tests: "tests/integration/"
coverage_threshold: 90
# Compatibility and versioning
compatibility:
min_framework_version: "1.0.0"
max_framework_version: "2.x.x"
python_versions: ["3.11", "3.12"]
# Optional deployment metadata
deployment:
container_image: "company/pii-filter:2.1.0"
k8s_manifest: "k8s/deployment.yaml"
health_check_endpoint: "/health"
Manifest Fields ReferenceΒΆ
Field | Type | Required | Description | Example |
---|---|---|---|---|
name | string | Yes | Human-readable plugin name | "Advanced PII Filter" |
kind | string | Yes | Plugin class path | "plugins.pii_filter.pii_filter.PIIFilterPlugin" |
description | string | Yes | Detailed plugin description | "Comprehensive PII detection with GDPR compliance" |
author | string | Yes | Plugin author or team | "Security Engineering Team" |
version | string | Yes | Semantic version | "2.1.0" |
license | string | License identifier | "MIT" , "Apache-2.0" | |
homepage | string | Plugin homepage URL | "https://github.com/company/plugin" | |
repository | string | Source code repository | "https://github.com/company/plugin.git" |
Plugin Capability FieldsΒΆ
Field | Type | Description | Values |
---|---|---|---|
available_hooks | string[] | Hook points the plugin can implement | ["prompt_pre_fetch", "tool_pre_invoke"] |
plugin_type | string | Plugin architecture type | "native" , "external" |
language | string | Implementation language | "python" , "typescript" , "go" , "rust" |
performance_tier | string | Expected latency characteristics | "high" (<1ms), "medium" (<10ms), "low" (<100ms) |
Configuration and DependenciesΒΆ
Field | Type | Description |
---|---|---|
default_config | object | Default plugin configuration template |
requirements | object | Runtime resource requirements |
dependencies | string[] | External package dependencies |
features | object | Plugin capability flags |
Core ComponentsΒΆ
Core Framework StructureΒΆ
mcpgateway/plugins/framework/
βββ base.py # Plugin base classes and PluginRef
βββ models.py # Pydantic models for all plugin types
βββ manager.py # PluginManager singleton with lifecycle management
βββ registry.py # Plugin instance registry and discovery
βββ constants.py # Framework constants and enums
βββ errors.py # Plugin-specific exception types
βββ utils.py # Utility functions for plugin operations
βββ loader/
β βββ config.py # Configuration loading and validation
β βββ plugin.py # Dynamic plugin loading and instantiation
βββ external/
βββ mcp/ # MCP external service integration
βββ client.py # MCP client for external plugin communication
βββ server/ # MCP server runtime for plugin hosting
βββ server.py # MCP server implementation
βββ runtime.py # Plugin runtime management
Base Plugin ClassΒΆ
The base plugin class, of which developers subclass and implement the hooks that are important for their plugins. Hook points are functions that interpose on existing MCP and agent-based functionality.
class Plugin:
"""Base plugin class for self-contained, in-process plugins"""
def __init__(self, config: PluginConfig) -> None:
"""Initialize plugin with configuration"""
@property
def name(self) -> str: ...
"""Plugin name"""
@property
def priority(self) -> int: ...
"""Plugin execution priority (lower = higher priority)"""
@property
def mode(self) -> PluginMode: ...
"""Plugin execution mode (enforce/permissive/disabled)"""
@property
def hooks(self) -> list[HookType]: ...
"""Hook points where plugin executes"""
@property
def conditions(self) -> list[PluginCondition] | None: ...
"""Conditions for plugin execution"""
async def initialize(self) -> None: ...
"""Initialize plugin resources"""
async def shutdown(self) -> None: ...
"""Cleanup plugin resources"""
# Hook methods (implemented by subclasses)
async def prompt_pre_fetch(self, payload: PromptPrehookPayload,
context: PluginContext) -> PromptPrehookResult: ...
async def prompt_post_fetch(self, payload: PromptPosthookPayload,
context: PluginContext) -> PromptPosthookResult: ...
async def tool_pre_invoke(self, payload: ToolPreInvokePayload,
context: PluginContext) -> ToolPreInvokeResult: ...
async def tool_post_invoke(self, payload: ToolPostInvokePayload,
context: PluginContext) -> ToolPostInvokeResult: ...
async def resource_pre_fetch(self, payload: ResourcePreFetchPayload,
context: PluginContext) -> ResourcePreFetchResult: ...
async def resource_post_fetch(self, payload: ResourcePostFetchPayload,
context: PluginContext) -> ResourcePostFetchResult: ...
# ... additional hook methods
Plugin ManagerΒΆ
The Plugin Manager loads configured plugins and executes them at their designated hook points based on a plugin's priority.
class PluginManager:
"""Singleton plugin manager for lifecycle management"""
def __init__(self, config: str = "", timeout: int = 30): ...
@property
def config(self) -> Config | None:
"""Plugin manager configuration"""
@property
def plugin_count(self) -> int:
"""Number of loaded plugins"""
@property
def initialized(self) -> bool:
"""Manager initialization status"""
async def initialize(self) -> None:
"""Initialize manager and load plugins"""
async def shutdown(self) -> None:
"""Shutdown all plugins and cleanup"""
def get_plugin(self, name: str) -> Optional[Plugin]:
"""Get plugin by name"""
# Hook execution methods
async def prompt_pre_fetch(self, payload: PromptPrehookPayload,
global_context: GlobalContext, ...) -> tuple[PromptPrehookResult, PluginContextTable]: ...
async def prompt_post_fetch(self, payload: PromptPosthookPayload, ...) -> tuple[PromptPosthookResult, PluginContextTable]: ...
async def tool_pre_invoke(self, payload: ToolPreInvokePayload, ...) -> tuple[ToolPreInvokeResult, PluginContextTable]: ...
async def tool_post_invoke(self, payload: ToolPostInvokePayload, ...) -> tuple[ToolPostInvokeResult, PluginContextTable]: ...
async def resource_pre_fetch(self, payload: ResourcePreFetchPayload, ...) -> tuple[ResourcePreFetchResult, PluginContextTable]: ...
async def resource_post_fetch(self, payload: ResourcePostFetchPayload, ...) -> tuple[ResourcePostFetchResult, PluginContextTable]: ...
Plugin RegistryΒΆ
The plugin registry implements plugin instance management and discovery.
class PluginInstanceRegistry:
"""Registry for plugin instance management and discovery"""
def register(self, plugin: Plugin) -> None:
"""Register a plugin instance"""
def unregister(self, name: str) -> None:
"""Unregister a plugin by name"""
def get_plugin(self, name: str) -> Optional[PluginRef]:
"""Get plugin reference by name"""
def get_plugins_for_hook(self, hook_type: HookType) -> list[PluginRef]:
"""Get all plugins registered for a specific hook"""
def get_all_plugins(self) -> list[PluginRef]:
"""Get all registered plugins"""
@property
def plugin_count(self) -> int:
"""Number of registered plugins"""
async def shutdown(self) -> None:
"""Shutdown all registered plugins"""
Plugin Reference SystemΒΆ
Plugin reference is used as UUID for plugin registration, discovery, and lifecycle management.
class PluginRef:
"""Plugin reference with UUID tracking for lifecycle management"""
def __init__(self, plugin: Plugin):
self._plugin = plugin
self._uuid = uuid.uuid4() # Unique instance identifier
@property
def plugin(self) -> Plugin:
return self._plugin
@property
def uuid(self) -> str:
return self._uuid.hex
Configuration LoadingΒΆ
The Configuration Loader provides utilities for loading configuration from file.
class ConfigLoader:
"""Configuration loading and validation"""
@staticmethod
def load_config(config_path: str) -> Config:
"""Load plugin configuration from YAML file"""
@staticmethod
def validate_config(config: Config) -> None:
"""Validate plugin configuration"""
@staticmethod
def merge_configs(base: Config, override: Config) -> Config:
"""Merge configuration files"""
Plugin Configuration ModelsΒΆ
Below are the Pydantic models for the plugin configuration system.
class PluginConfig(BaseModel):
"""Plugin configuration schema"""
name: str # Required: Unique plugin name
kind: str # Required: Plugin class path or "external"
description: Optional[str] = None # Plugin description
author: Optional[str] = None # Plugin author
version: Optional[str] = None # Plugin version
hooks: Optional[list[HookType]] = None # Hook points to register
tags: Optional[list[str]] = None # Searchable tags
mode: PluginMode = PluginMode.ENFORCE # Execution mode
priority: Optional[int] = None # Execution priority
conditions: Optional[list[PluginCondition]] = None # Execution conditions
config: Optional[dict[str, Any]] = None # Plugin-specific settings
mcp: Optional[MCPConfig] = None # External MCP server configuration
class PluginCondition(BaseModel):
server_ids: Optional[set[str]] = None # Target server IDs
tenant_ids: Optional[set[str]] = None # Target tenant IDs
tools: Optional[set[str]] = None # Target tool names
prompts: Optional[set[str]] = None # Target prompt names
resources: Optional[set[str]] = None # Target resource URIs
user_patterns: Optional[list[str]] = None # User pattern matching
content_types: Optional[list[str]] = None # Content type filtering
class MCPConfig(BaseModel):
"""MCP configuration for external plugins"""
proto: TransportType # STDIO, SSE, or STREAMABLEHTTP
url: Optional[str] = None # Service URL (for HTTP transports)
script: Optional[str] = None # Script path (for STDIO transport)
class PluginMode(str, Enum):
"""Plugin execution modes"""
ENFORCE = "enforce" # Block requests that violate plugin rules
ENFORCE_IGNORE_ERROR = "enforce_ignore_error" # Enforce rules, ignore errors
PERMISSIVE = "permissive" # Log violations but allow continuation
DISABLED = "disabled" # Plugin loaded but not executed
class HookType(str, Enum):
"""Available hook points in MCP request lifecycle"""
PROMPT_PRE_FETCH = "prompt_pre_fetch" # Before prompt retrieval
PROMPT_POST_FETCH = "prompt_post_fetch" # After prompt rendering
TOOL_PRE_INVOKE = "tool_pre_invoke" # Before tool execution
TOOL_POST_INVOKE = "tool_post_invoke" # After tool execution
RESOURCE_PRE_FETCH = "resource_pre_fetch" # Before resource fetching
RESOURCE_POST_FETCH = "resource_post_fetch" # After resource retrieval
class TransportType(str, Enum):
"""Supported MCP transport protocols"""
SSE = "sse" # Server-Sent Events
HTTP = "http" # HTTP
STDIO = "stdio" # Standard input/output
STREAMABLEHTTP = "streamablehttp" # HTTP with streaming support
Context ManagementΒΆ
Plugin Context SystemΒΆ
class GlobalContext(BaseModel):
"""Shared context across all plugins in a request"""
request_id: str # Unique request identifier
user: Optional[str] = None # User making the request
tenant_id: Optional[str] = None # Tenant context
server_id: Optional[str] = None # Virtual server context
class PluginContext(GlobalContext):
"""Per-plugin context with state management"""
state: dict[str, Any] = {} # Cross-plugin shared state
metadata: dict[str, Any] = {} # Plugin execution metadata
def get_state(self, key: str, default: Any = None) -> Any:
"""Get value from shared state"""
return self.state.get(key, default)
def set_state(self, key: str, value: Any) -> None:
"""Set value in shared state"""
self.state[key] = value
Context Lifecycle ManagementΒΆ
class PluginManager:
# Context cleanup tracking
_context_store: Dict[str, Tuple[PluginContextTable, float]] = {}
_last_cleanup: float = 0
async def _cleanup_old_contexts(self) -> None:
"""Remove contexts older than CONTEXT_MAX_AGE to prevent memory leaks"""
current_time = time.time()
if current_time - self._last_cleanup < CONTEXT_CLEANUP_INTERVAL:
return
# Find and remove expired contexts
expired_keys = [
key for key, (_, timestamp) in self._context_store.items()
if current_time - timestamp > CONTEXT_MAX_AGE
]
for key in expired_keys:
del self._context_store[key]
Hook SystemΒΆ
Hook Execution FlowΒΆ
The hook execution flow implements a priority-based pipeline that processes MCP requests through multiple plugin layers before reaching core gateway logic. This architecture ensures predictable plugin execution order while enabling comprehensive request/response transformation and policy enforcement.
---
config:
mirrorActors: false
---
sequenceDiagram
participant Client
participant Gateway
participant PM as PluginManager
participant P1 as Plugin 1 (Priority 10)
participant P2 as Plugin 2 (Priority 20)
participant Core as Core Logic
Client->>Gateway: MCP Request
Gateway->>PM: Execute Hook (e.g., tool_pre_invoke)
PM->>P1: Execute (higher priority)
P1-->>PM: Result (continue=true, modified_payload)
PM->>P2: Execute with modified payload
P2-->>PM: Result (continue=true)
PM-->>Gateway: Final Result
alt Continue Processing
Gateway->>Core: Execute Core Logic
Core-->>Gateway: Response
Gateway-->>Client: Success Response
else Block Request
Gateway-->>Client: Violation Response
end
Execution Flow BreakdownΒΆ
Phase 1: Request Reception & Hook Identification
- Client Request: MCP client sends request (tool invocation, prompt fetch, resource access) to the gateway
- Hook Selection: Gateway identifies the appropriate hook type based on the request (e.g.,
tool_pre_invoke
for tool calls) - Plugin Manager Invocation: Gateway delegates hook execution to the Plugin Manager with request payload
Phase 2: Priority-Based Plugin Execution
- Plugin Discovery: Plugin Manager retrieves all plugins registered for the specific hook type
- Priority Sorting: Plugins are sorted in ascending priority order (lower numbers execute first)
- Conditional Filtering: Plugins with conditions are filtered based on current request context (user, tenant, server, etc.)
Phase 3: Sequential Plugin Processing
- First Plugin Execution: Highest priority plugin (P1, priority 10) executes with original payload
- Result Evaluation: Plugin returns
PluginResult
indicating whether to continue processing - Payload Chain: If P1 modifies the payload, the modified version is passed to the next plugin
- Second Plugin Execution: Next priority plugin (P2, priority 20) executes with potentially modified payload
- Continue Chain: Process repeats for all remaining plugins in priority order
Phase 4: Flow Control Decision
- Aggregated Result: Plugin Manager combines all plugin results and determines final action
- Continue vs Block: Based on plugin results, request either continues to core logic or is blocked
Phase 5: Request Resolution
- Continue Path: If all plugins allow processing, request continues to core gateway logic
- Core logic executes the actual MCP operation (tool invocation, prompt rendering, resource fetching)
- Success response is returned to client
- Block Path: If any plugin blocks the request with a violation
- Request processing stops immediately
- Violation details are returned to client as an error response
Plugin Interaction PatternsΒΆ
Payload Transformation Chain:
Example Flow for Tool Pre-Invoke:
- Client calls
file_reader
tool with path argument - Gateway triggers
tool_pre_invoke
hook - Security Plugin (Priority 10): Validates file path, blocks access to
/etc/passwd
- Sanitization Plugin (Priority 20): Never executes (request blocked)
- Result: Client receives "Access Denied" error
Alternative Success Flow:
- Client calls
file_reader
tool with path./documents/report.txt
- Security Plugin (Priority 10): Validates path, allows access, normalizes path
- Sanitization Plugin (Priority 20): Adds read timeout, limits file size
- Core Logic: Executes file reading with sanitized parameters
- Result: Client receives file contents
Error Handling and ResilienceΒΆ
Plugin Error Isolation:
- Plugin execution errors don't crash other plugins or the gateway
- Failed plugins are logged and handled based on their execution mode:
- Enforce Mode: Plugin errors block the request
- Permissive Mode: Plugin errors are logged but request continues
- Enforce Ignore Error Mode: Plugin violations block, but technical errors are ignored
Timeout Protection:
- Each plugin execution is wrapped with configurable timeouts (default 30 seconds)
- Timed-out plugins are treated as errors according to their execution mode
- External plugins may have longer timeout allowances due to network latency
Context Preservation:
- Plugin contexts are preserved across the execution chain
- State set by early plugins is available to later plugins
- Global context maintains request-level information throughout the flow
This execution model ensures predictable behavior, comprehensive security coverage, and operational resilience while maintaining the flexibility to implement complex policy enforcement and content transformation workflows.
Plugin Execution PriorityΒΆ
- Plugins execute in ascending priority order (lower number = higher priority)
- Priority Ranges (recommended):
1-50
: Critical security plugins (authentication, PII filtering)51-100
: Content filtering and validation101-200
: Transformations and enhancements201+
: Logging and monitoring
Hook RegistrationΒΆ
# Plugin registers for specific hooks via configuration
hooks: list[HookType] = [
HookType.PROMPT_PRE_FETCH,
HookType.TOOL_PRE_INVOKE,
HookType.TOOL_POST_INVOKE
]
# Plugin Manager routes hooks to registered plugins
plugins = registry.get_plugins_for_hook(HookType.TOOL_PRE_INVOKE)
Conditional ExecutionΒΆ
Plugins can specify conditions for when they should execute:
class PluginCondition(BaseModel):
"""Conditions for plugin execution"""
server_ids: Optional[set[str]] = None # Execute only for specific servers
tenant_ids: Optional[set[str]] = None # Execute only for specific tenants
tools: Optional[set[str]] = None # Execute only for specific tools
prompts: Optional[set[str]] = None # Execute only for specific prompts
resources: Optional[set[str]] = None # Execute only for specific resources
user_patterns: Optional[list[str]] = None # Execute for users matching patterns
content_types: Optional[list[str]] = None # Execute for specific content types
Hook Reference DocumentationΒΆ
The plugin framework provides two main categories of hooks, each documented in detail in separate files:
MCP Security HooksΒΆ
For detailed information about MCP protocol security hooks including payload structures, examples, and use cases, see:
Gateway Administrative HooksΒΆ
For detailed information about gateway management and administrative hooks, see:
Gateway Administrative Hooks Reference
External Plugin IntegrationΒΆ
Plugin LifecycleΒΆ
The plugin framework provides comprehensive lifecycle management for both native and external plugins, encompassing the complete journey from development to production deployment. The lifecycle follows a structured workflow designed to ensure plugin quality, security, and operational reliability.
Development WorkflowΒΆ
The plugin development process follows a streamlined four-phase approach that gets developers from concept to running plugin quickly:
graph LR
A["Template"]
B(["Bootstrap"])
C(["Build"])
D(["Serve"])
subgraph dev["Development Phase"]
A -.-> B
end
subgraph deploy["Deployment Phase"]
C --> D
end
B --> C
subgraph CF["Context Forge Gateway"]
E["Gateway"]
D o--"MCP<br> <small>tools/hooks</small> "--o E
end
style A stroke-dasharray: 3 3;
Phase Breakdown:
- Bootstrap Phase: Initialize project structure from templates with metadata and configuration
- Build Phase: Compile, package, and validate plugin code with dependencies
- Serve Phase: Launch development server for testing and integration validation
- Integration Phase: Connect to Context Forge gateway via MCP protocol for end-to-end testing
Plugin Types and TemplatesΒΆ
The framework supports two primary plugin architectures with dedicated development templates:
Native PluginsΒΆ
- Architecture: Run in-process within the gateway
- Language: Python only
- Performance: lowest latency, direct memory access
- Use Cases: High-frequency operations, simple transformations, core security checks
Template Structure:
plugin_templates/native/
βββ plugin.py.jinja # Plugin class skeleton extending Plugin base
βββ plugin-manifest.yaml.jinja # Metadata (description, author, version, hooks)
βββ config.yaml.jinja # Configuration entry for plugins/config.yaml
βββ __init__.py.jinja # Package initialization
βββ README.md.jinja # Documentation template
External PluginsΒΆ
- Architecture: Standalone MCP servers communicating via protocol
- Language: Any language (Python, TypeScript, Go, Rust, etc.)
- Performance: 10-100ms latency depending on network and service
- Use Cases: AI service integration, complex processing, external tool orchestration
Plugin Development CommandsΒΆ
The mcpplugins
CLI tool provides comprehensive lifecycle management:
# Create new plugin from template
mcpplugins bootstrap --destination ./my-security-plugin
# Plugin development workflow
cd ./my-security-plugin
cp .env.template .env
make install-dev # Install dependencies
make test # Run tests
make build # Build container (external plugins)
make start # Start development server
# Verify external plugin MCP endpoint
npx @modelcontextprotocol/inspector
Gateway Integration ProcessΒΆ
External plugins integrate with the gateway through standardized configuration:
Plugin Server Configuration:
# resources/plugins/config.yaml (in plugin project)
plugins:
# TypeScript/Node.js plugin
- name: "OpenAIModerationTS"
kind: "external"
mcp:
proto: "STREAMABLEHTTP"
url: "http://nodejs-plugin:3000/mcp"
# tls:
# ca_bundle: /app/certs/plugins/ca.crt
# client_cert: /app/certs/plugins/gateway-client.pem
# Go plugin
- name: "HighPerformanceFilter"
kind: "external"
mcp:
proto: "STDIO"
script: "/opt/plugins/go-filter"
# Rust plugin
- name: "CryptoValidator"
kind: "external"
mcp:
proto: "STREAMABLEHTTP"
url: "http://rust-plugin:8080/mcp"
# tls:
# verify: true
Gateway-wide defaults for these TLS options can be supplied via the
`PLUGINS_MTLS_*` environment variables when you want every external
plugin to share the same client certificate and CA bundle.
Gateway Configuration:
# plugins/config.yaml (in gateway)
plugins:
- name: "MySecurityFilter"
kind: "external"
priority: 10
mcp:
proto: "STREAMABLEHTTP"
url: "http://localhost:8000/mcp"
MCP Protocol IntegrationΒΆ
External plugins communicate via the Model Context Protocol (MCP), enabling language-agnostic plugin development.
---
config:
mirrorActors: false
---
sequenceDiagram
participant Gateway as MCP Gateway
participant Client as External Plugin Client
participant Server as Remote MCP Server
participant Service as External AI Service
Note over Gateway,Service: Plugin Initialization
Gateway->>Client: Initialize External Plugin
Client->>Server: MCP Connection (HTTP/WS/STDIO)
Server-->>Client: Connection Established
Client->>Server: get_plugin_config(plugin_name)
Server-->>Client: Plugin Configuration
Client-->>Gateway: Plugin Ready
Note over Gateway,Service: Request Processing
Gateway->>Client: tool_pre_invoke(payload, context)
Client->>Server: MCP Tool Call: tool_pre_invoke
alt Self-Processing
Server->>Server: Process Internally
else External Service Call
Server->>Service: API Call (OpenAI, LlamaGuard, etc.)
Service-->>Server: Service Response
end
Server-->>Client: MCP Response
Client-->>Gateway: PluginResult
Required MCP ToolsΒΆ
External plugin servers must implement these standard MCP tools:
REQUIRED_TOOLS = [
"get_plugin_config", # Return plugin configuration metadata
"prompt_pre_fetch", # Process prompt before template rendering
"prompt_post_fetch", # Process prompt after template rendering
"tool_pre_invoke", # Process tool call before execution
"tool_post_invoke", # Process tool result after execution
"resource_pre_fetch", # Process resource request before fetching
"resource_post_fetch", # Process resource content after fetching
]
External Plugin ConfigurationΒΆ
plugins:
- name: "OpenAIModerationPlugin"
kind: "external" # Indicates external MCP server
description: "OpenAI Content Moderation"
version: "1.0.0"
hooks: ["tool_pre_invoke", "prompt_pre_fetch"]
mode: "enforce"
priority: 30
mcp:
proto: "STREAMABLEHTTP" # Transport protocol
url: "http://openai-plugin:3000/mcp" # Server URL
# Optional authentication
auth:
type: "bearer"
token: "${OPENAI_API_KEY}"
External Plugin Example (TypeScript)ΒΆ
// TypeScript/Node.js external plugin example
import { MCPServer, Tool } from '@modelcontextprotocol/sdk';
import OpenAI from 'openai';
class OpenAIModerationPlugin {
private openai: OpenAI;
constructor() {
this.openai = new OpenAI({
apiKey: process.env.OPENAI_API_KEY
});
}
@Tool('tool_pre_invoke')
async handleToolPreInvoke(params: any) {
const { payload, context } = params;
const content = Object.values(payload.args || {})
.filter(v => typeof v === 'string')
.join(' ');
if (!content.trim()) {
return { continue_processing: true };
}
try {
const moderation = await this.openai.moderations.create({
input: content,
model: 'text-moderation-stable'
});
const result = moderation.results[0];
if (result.flagged) {
const flaggedCategories = Object.entries(result.categories)
.filter(([_, flagged]) => flagged)
.map(([category, _]) => category);
return {
continue_processing: false,
violation: {
reason: 'Content policy violation',
description: `OpenAI Moderation flagged: ${flaggedCategories.join(', ')}`,
code: 'OPENAI_MODERATION_FLAGGED',
details: {
categories: result.categories,
flagged_categories: flaggedCategories
}
}
};
}
return {
continue_processing: true,
metadata: {
openai_moderation_score: Math.max(...Object.values(result.category_scores))
}
};
} catch (error) {
return {
continue_processing: true,
metadata: { moderation_error: error.message }
};
}
}
@Tool('get_plugin_config')
async getPluginConfig(params: { name: string }) {
return {
name: params.name,
description: 'OpenAI Content Moderation',
version: '1.0.0',
hooks: ['tool_pre_invoke', 'prompt_pre_fetch'],
tags: ['openai', 'moderation', 'content-safety'],
mode: 'enforce',
priority: 30
};
}
}
const server = new MCPServer();
const plugin = new OpenAIModerationPlugin();
server.registerPlugin(plugin);
server.listen({ transport: 'stdio' });
Security and ProtectionΒΆ
Timeout ProtectionΒΆ
class PluginExecutor:
async def _execute_with_timeout(self, plugin: PluginRef,
plugin_run: Callable, payload: T,
context: PluginContext) -> PluginResult[T]:
"""Execute plugin with timeout protection"""
return await asyncio.wait_for(
plugin_run(plugin, payload, context),
timeout=self.timeout # Default 30 seconds
)
Payload Size ValidationΒΆ
def _validate_payload_size(self, payload: Any) -> None:
"""Validate that payload doesn't exceed size limits"""
if hasattr(payload, "args") and payload.args:
total_size = sum(len(str(v)) for v in payload.args.values())
if total_size > MAX_PAYLOAD_SIZE: # 1MB limit
raise PayloadSizeError(f"Payload size {total_size} exceeds limit")
Error IsolationΒΆ
async def execute(self, plugins: list[PluginRef], ...) -> tuple[PluginResult[T], PluginContextTable]:
for plugin in plugins:
try:
result = await self._execute_with_timeout(plugin, ...)
# Process result...
except asyncio.TimeoutError:
logger.error(f"Plugin {plugin.name} timed out after {self.timeout}s")
if plugin.mode == PluginMode.ENFORCE:
return create_timeout_violation()
except Exception as e:
logger.error(f"Plugin {plugin.name} failed: {str(e)}", exc_info=True)
if plugin.mode == PluginMode.ENFORCE:
return create_error_violation(e)
# In permissive mode, continue with next plugin
Security CapabilitiesΒΆ
Future versions will support a security capability system for plugins. Through the configuration manifest, the following set of capabilities can be defined:
- hook:invoke:
β allow executing specific hook(s) - read:context / write:context β access to plugin context/state
- network:egress / network:ingress β outbound/inbound network access (with host/port scopes)
- secrets:get β fetch secrets from vault (scoped)
- filesystem:read / filesystem:write β filesystem access (scoped)
- exec:process β ability to spawn subprocesses
- metrics:emit β emit metrics/traces
An example manifest:
name: pii-filter
version: 1.0.0
framework_compatibility: "mcp-plugin-framework>=1.0.0,<2.0.0"
...
hooks:
- prompt_pre_fetch
capabilities:
- hook:invoke:prompt_pre_fetch
- read:context
Plugin SigningΒΆ
Future versions will support cryptographic signing of plugins for supply chain security (e.g., leveraging Sigstore signing infrastructure).
An example manifest:
name: pii-filter
version: 1.0.0
framework_compatibility: "mcp-plugin-framework>=1.0.0,<2.0.0"
...
signing:
algorithm: "ECDSA"
signature: "..."
Performance ConsiderationsΒΆ
Resource ManagementΒΆ
- Memory Usage: Base framework overhead, scales linearly with active plugins
- CPU Impact: Native plugins add negligible latency per hook
- Context Cleanup: Automatic cleanup every 5 minutes, contexts expire after 1 hour
- Timeout Protection: Default 30-second timeout per plugin prevents hangs
Optimization StrategiesΒΆ
# Configuration constants for performance tuning
DEFAULT_PLUGIN_TIMEOUT = 30 # seconds
MAX_PAYLOAD_SIZE = 1_000_000 # 1MB
CONTEXT_CLEANUP_INTERVAL = 300 # 5 minutes
CONTEXT_MAX_AGE = 3600 # 1 hour
# Parallel execution within priority bands (future enhancement)
class PluginSettings(BaseModel):
parallel_execution_within_band: bool = False # Execute same-priority plugins in parallel
plugin_timeout: int = 30 # Per-plugin timeout
fail_on_plugin_error: bool = False # Continue on plugin failures
Development GuidelinesΒΆ
Plugin Development WorkflowΒΆ
- Create Plugin Class: Extend
Plugin
base class - Implement Hook Methods: Override required hook methods
- Define Configuration Schema: Create plugin-specific config structure
- Add Plugin Manifest: Create
plugin-manifest.yaml
with metadata - Write Tests: Comprehensive unit and integration tests
- Register Plugin: Add to
plugins/config.yaml
Built-in Plugin ExamplesΒΆ
PII Filter Plugin (Native)ΒΆ
class PIIFilterPlugin(Plugin):
"""Detects and masks Personally Identifiable Information"""
async def prompt_pre_fetch(self, payload: PromptPrehookPayload,
context: PluginContext) -> PromptPrehookResult:
pii_patterns = self._load_pii_patterns()
violations = []
for arg_name, arg_value in payload.args.items():
detected_pii = self._scan_for_pii(arg_value, pii_patterns)
if detected_pii:
if self.config.get("block_on_detection", False):
violation = PluginViolation(
reason="PII detected in prompt arguments",
description=f"Found {len(detected_pii)} PII items in {arg_name}",
code="PII_DETECTED",
details={"field": arg_name, "types": detected_pii}
)
return PluginResult(
continue_processing=False,
violation=violation
)
# Apply masking
masked_value = self._apply_masking(arg_value, detected_pii)
payload.args[arg_name] = masked_value
return PluginResult(
continue_processing=True,
modified_payload=payload,
metadata={"pii_detections": len(violations)}
)
Resource Filter Plugin (Security)ΒΆ
class ResourceFilterPlugin(Plugin):
"""Validates and filters resource requests"""
async def resource_pre_fetch(self, payload: ResourcePreFetchPayload,
context: PluginContext) -> ResourcePreFetchResult:
uri_parts = urlparse(payload.uri)
# Protocol validation
allowed_protocols = self.config.get("allowed_protocols", ["http", "https"])
if uri_parts.scheme not in allowed_protocols:
return PluginResult(
continue_processing=False,
violation=PluginViolation(
reason="Blocked protocol",
description=f"Protocol '{uri_parts.scheme}' not in allowed list",
code="PROTOCOL_BLOCKED",
details={"protocol": uri_parts.scheme, "uri": payload.uri}
)
)
# Domain validation
blocked_domains = self.config.get("blocked_domains", [])
if uri_parts.netloc in blocked_domains:
return PluginResult(
continue_processing=False,
violation=PluginViolation(
reason="Blocked domain",
description=f"Domain '{uri_parts.netloc}' is in blocked list",
code="DOMAIN_BLOCKED",
details={"domain": uri_parts.netloc}
)
)
return PluginResult(continue_processing=True)
async def resource_post_fetch(self, payload: ResourcePostFetchPayload,
context: PluginContext) -> ResourcePostFetchResult:
content = payload.content
# Size validation
max_size = self.config.get("max_content_size", 1048576) # 1MB default
if hasattr(content, 'text') and len(content.text) > max_size:
return PluginResult(
continue_processing=False,
violation=PluginViolation(
reason="Content too large",
description=f"Content size {len(content.text)} exceeds limit {max_size}",
code="CONTENT_SIZE_EXCEEDED",
details={"size": len(content.text), "limit": max_size}
)
)
# Content filtering
if hasattr(content, 'text'):
filtered_text = self._apply_content_filters(content.text)
if filtered_text != content.text:
content.text = filtered_text
return PluginResult(
continue_processing=True,
modified_payload=payload,
metadata={"content_filtered": True}
)
return PluginResult(continue_processing=True)
TestingΒΆ
Testing Framework IntegrationΒΆ
# Example plugin test
class TestPIIFilterPlugin:
async def test_pii_detection_and_masking(self):
config = PluginConfig(
name="test_pii",
kind="plugins.pii_filter.pii_filter.PIIFilterPlugin",
hooks=[HookType.PROMPT_PRE_FETCH],
config={"detect_ssn": True, "mask_strategy": "partial"}
)
plugin = PIIFilterPlugin(config)
payload = PromptPrehookPayload(
name="test",
args={"user_input": "My SSN is 123-45-6789"}
)
context = PluginContext(request_id="test-123")
result = await plugin.prompt_pre_fetch(payload, context)
assert result.continue_processing
assert "XXX-XX-6789" in result.modified_payload.args["user_input"]
Platform-Agnostic DesignΒΆ
The plugin framework is designed as a reusable, standalone ecosystem that can be embedded in any application requiring extensible middleware processing.
Framework PortabilityΒΆ
flowchart TD
subgraph "Core Framework (Portable)"
Framework["Plugin Framework\\n(Python Package)"]
Interface["Plugin Interface\\n(Language Agnostic)"]
Protocol["MCP Protocol\\n(Cross-Platform)"]
end
subgraph "Host Applications"
MCPGateway["MCP Gateway\\n(Primary Use Case)"]
WebFramework["FastAPI/Flask App"]
CLITool["CLI Application"]
Microservice["Microservice"]
DataPipeline["Data Pipeline"]
end
Framework --> Interface
Interface --> Protocol
Framework --> MCPGateway
Framework --> WebFramework
Framework --> CLITool
Framework --> Microservice
Framework --> DataPipeline
style Framework fill:#fff3e0
style Protocol fill:#e8f5e8
style MCPGateway fill:#e3f2fd
Integration PatternsΒΆ
Framework as Python PackageΒΆ
# Any Python application can embed the plugin framework
from mcpgateway.plugins import PluginManager, PluginConfig
class MyApplication:
def __init__(self):
self.plugin_manager = PluginManager(
config_path="/path/to/plugins.yaml",
timeout=30
)
async def process_request(self, request):
payload = RequestPayload(data=request.data)
context = GlobalContext(request_id=request.id)
# Pre-processing with plugins
result, _ = await self.plugin_manager.custom_pre_hook(
payload, context
)
if not result.continue_processing:
return ErrorResponse(result.violation.description)
# Your application logic here
response = await self.process_business_logic(
result.modified_payload or payload
)
return response
Language InteroperabilityΒΆ
The MCP-based external plugin system enables development in multiple languages:
# Multi-language plugin deployment
plugins:
# Python native plugin
- name: "FastValidation"
kind: "internal.validators.FastValidator"
# TypeScript/Node.js plugin
- name: "OpenAIModerationTS"
kind: "external"
mcp:
proto: "STREAMABLEHTTP"
url: "http://nodejs-plugin:3000/mcp"
# Go plugin
- name: "HighPerformanceFilter"
kind: "external"
mcp:
proto: "STDIO"
script: "/opt/plugins/go-filter"
# Rust plugin
- name: "CryptoValidator"
kind: "external"
mcp:
proto: "STREAMABLEHTTP"
url: "http://rust-plugin:8080/mcp"
Future ExtensionsΒΆ
Legend: β = Completed | π§ = In Progress | π = Planned
Planned Hook PointsΒΆ
# HTTP hooks
HTTP_PRE_FORWARDING_CALL = "http_pre_forwarding_call" # Before HTTP forwarding
HTTP_POST_FORWARDING_CALL = "http_post_forwarding_call" # After HTTP forwarding
# Server lifecycle hooks
SERVER_PRE_REGISTER = "server_pre_register" # Server attestation and validation
SERVER_POST_REGISTER = "server_post_register" # Post-registration processing
# Authentication hooks
AUTH_PRE_CHECK = "auth_pre_check" # Custom authentication logic
AUTH_POST_CHECK = "auth_post_check" # Post-authentication processing
# Federation hooks
FEDERATION_PRE_SYNC = "federation_pre_sync" # Pre-federation validation
FEDERATION_POST_SYNC = "federation_post_sync" # Post-federation processing
External Service IntegrationsΒΆ
Current IntegrationsΒΆ
- β Open Policy Agent (OPA): Policy-as-code enforcement engine
- β LlamaGuard: Content safety classification and filtering
- β OpenAI Moderation API: Commercial content moderation
- β Custom MCP Servers: Any language, any protocol
Planned Integrations (Phase 2-3)ΒΆ
- π§ HashiCorp Vault: Secret management for plugin configurations
- π§ SPIFFE/SPIRE: Workload identity and attestation
- π AWS GuardDuty: Cloud security monitoring integration
- π Azure Cognitive Services: Enterprise AI services
- π Google Cloud AI: ML model integration
- π Kubernetes Operators: Native K8s plugin deployment
- π Istio/Envoy: Service mesh integration