API Reference
mlflow_watsonml.WatsonMLDeploymentClient¶
Bases: BaseDeploymentClient
Source code in mlflow_watsonml/deploy.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
|
__init__(target_uri='watsonml', config=None)
¶
Initialize a WML APIClient
. The method has an optional parameter called
config
which should have the WML credentials. If config
is None
, then
the plugin will try to search for WML credentials in .env
file or the
environment variables.
Refer to the following links for setting up the credentials -
Parameters:
Name | Type | Description | Default |
---|---|---|---|
target_uri |
str
|
Target URI for mlflow deployment, by default "watsonml" |
'watsonml'
|
config |
Optional[Dict]
|
WML Credentials, by default None |
None
|
Source code in mlflow_watsonml/deploy.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
|
connect(wml_credentials)
¶
Connect to WML APIClient and set the default deployment space
Parameters:
Name | Type | Description | Default |
---|---|---|---|
wml_credentials |
Dict
|
WML Credentials |
required |
Source code in mlflow_watsonml/deploy.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
|
create_custom_wml_spec(name, custom_packages, conda_yaml, endpoint, rewrite=False)
¶
Create a custom WML Software Specification
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
name for the software specification |
required |
custom_packages |
Optional[List[str]]
|
a list of zip file paths for custom packages |
required |
conda_yaml |
Optional[str]
|
file path to conda.yaml file |
required |
endpoint |
str
|
deployment space name |
required |
rewrite |
bool
|
whether to rewrite the existing software specification, by default False |
False
|
Returns:
Type | Description |
---|---|
str
|
id of the software specification |
Source code in mlflow_watsonml/deploy.py
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
|
create_deployment(name, model_uri, flavor, config, endpoint)
¶
Deploy a model at model_uri
to a WML target. this method blocks until
deployment completes (i.e. until it's possible to perform inference with the deployment).
In the case of conflicts (e.g. if it's not possible to create the specified deployment
without due to conflict with an existing deployment), raises a
:py:class:mlflow.exceptions.MlflowException
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
name of the deployment |
required |
model_uri |
str
|
URI (local or remote) of the model |
required |
flavor |
str
|
flavor of the deployed model |
required |
config |
Dict
|
configuration parameters for wml deployment. possible optional configuration keys are - - "software_spec_name" : name of the software specification to reuse - "conda_yaml" : filepath of conda.yaml file - "custom_packages": a list of str - zip file paths of the packages - "rewrite_software_spec": bool whether to rewrite the software spec - "hardware_spec_name" : name of the hardware specification to use (Default: XS) |
required |
endpoint |
str
|
deployment space name |
required |
Returns:
Type | Description |
---|---|
Dict
|
deployment details dictionary |
Source code in mlflow_watsonml/deploy.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
|
create_endpoint(name, config=None)
¶
Create an endpoint with the specified target. By default, this method should block until
creation completes (i.e. until it's possible to create a deployment within the endpoint).
In the case of conflicts (e.g. if it's not possible to create the specified endpoint
due to conflict with an existing endpoint), raises a
:py:class:mlflow.exceptions.MlflowException
. See target-specific plugin documentation
for additional detail on support for asynchronous creation and other configuration.
:param name: Unique name to use for endpoint. If another endpoint exists with the same
name, raises a :py:class:mlflow.exceptions.MlflowException
.
:param config: (optional) Dict containing target-specific configuration for the
endpoint.
:return: Dict corresponding to created endpoint, which must contain the 'name' key.
Source code in mlflow_watsonml/deploy.py
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
|
delete_deployment(name, config=None, endpoint=None)
¶
Delete the deployment with name name
from WML. Deletion is idempotent
(i.e. deletion does not fail if retried on a non-existent deployment).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
name of the deployment to delete |
required |
config |
Optional[Dict]
|
configuration parameters, by default None |
None
|
endpoint |
Optional[str]
|
deployment space name, by default None |
None
|
Source code in mlflow_watsonml/deploy.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
|
delete_endpoint(endpoint)
¶
Delete the endpoint from the specified target. Deletion should be idempotent (i.e. deletion should not fail if retried on a non-existent deployment).
:param endpoint: Name of endpoint to delete :return: None
Source code in mlflow_watsonml/deploy.py
509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
|
get_deployment(name, endpoint)
¶
Returns a dictionary describing the specified deployment, throwing a
:py:class:mlflow.exceptions.MlflowException
if no deployment exists with the provided
name.
The dict is guaranteed to contain a 'name' key containing the deployment name.
The other fields of the returned dictionary and their types follow WML convention.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
name of the deployment to fetch |
required |
endpoint |
str
|
deployment space name |
required |
Returns:
Type | Description |
---|---|
Dict
|
A dict corresponding to the retrieved deployment. The dict is guaranteed to contain a 'name' key corresponding to the deployment name. |
Source code in mlflow_watsonml/deploy.py
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
|
get_wml_client(endpoint)
¶
Returns WML API client
Parameters:
Name | Type | Description | Default |
---|---|---|---|
endpoint |
str
|
deployment space name |
required |
Returns:
Type | Description |
---|---|
APIClient
|
WML client |
Source code in mlflow_watsonml/deploy.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
|
list_deployments(endpoint)
¶
List deployments. This method returns an unpaginated list of all deployments
Parameters:
Name | Type | Description | Default |
---|---|---|---|
endpoint |
str
|
deployment space name |
required |
Returns:
Type | Description |
---|---|
List[Dict]
|
A list of dicts corresponding to deployments. Each dict is guaranteed to contain a 'name' key containing the deployment name. The other fields of the returned dictionary and their types follow WML deployment details convention. |
Source code in mlflow_watsonml/deploy.py
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
|
list_endpoints()
¶
List endpoints in the specified target. This method is expected to return an
unpaginated list of all endpoints (an alternative would be to return a dict with
an 'endpoints' field containing the actual endpoints, with plugins able to specify
other fields, e.g. a next_page_token field, in the returned dictionary for pagination,
and to accept a pagination_args
argument to this method for passing
pagination-related args).
:return: A list of dicts corresponding to endpoints. Each dict is guaranteed to contain a 'name' key containing the endpoint name. The other fields of the returned dictionary and their types may vary across targets.
Source code in mlflow_watsonml/deploy.py
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
|
predict(deployment_name, inputs, endpoint)
¶
Compute predictions on inputs using the specified deployment
predict( model_input: ) ->
Parameters:
Name | Type | Description | Default |
---|---|---|---|
deployment_name |
str
|
Name of deployment to predict against |
required |
inputs |
DataFrame
|
Input data (or arguments) to pass to the deployment for inference, |
required |
endpoint |
str
|
deployment space name |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
Model predictions as pandas.DataFrame |
Source code in mlflow_watsonml/deploy.py
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
|
update_deployment(name, model_uri, flavor, config, endpoint)
¶
Update the deployment with the specified name. You can update the URI of the model, the flavor of the deployed model (in which case the model URI must also be specified). By default, this method blocks until deployment completes (i.e. until it's possible to perform inference with the updated deployment).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Unique name of the deployment to update |
required |
model_uri |
str
|
URI of a new model to deploy |
required |
flavor |
str
|
new model flavor to use for deployment. If provided,
|
required |
config |
Optional[Dict]
|
dict containing updated WML-specific configuration for the |
required |
endpoint |
str
|
deployment space name |
required |
Returns:
Type | Description |
---|---|
Dict
|
deployment details dictionary |
Source code in mlflow_watsonml/deploy.py
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
update_endpoint(endpoint, config=None)
¶
Update the endpoint with the specified name. You can update any target-specific attributes
of the endpoint (via config
). By default, this method should block until the update
completes (i.e. until it's possible to create a deployment within the endpoint). See
target-specific plugin documentation for additional detail on support for asynchronous
update and other configuration.
:param endpoint: Unique name of endpoint to update :param config: (optional) dict containing target-specific configuration for the endpoint :return: None
Source code in mlflow_watsonml/deploy.py
494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
|