neuroaikit.tf.layers.snubasiccell.SNUBasicCell¶
- class neuroaikit.tf.layers.snubasiccell.SNUBasicCell(*args, **kwargs)[source]¶
Bases:
keras.engine.base_layer.Layer
This is a basic SNU cell.
- Parameters
units – Number of units to create in the layer
decay – Membrane potential decay multiplier, defaults to 0.8, i.e. 0.8 of the previous membrane potential is retained
activation – Activation function, defaults to step_function. See TF_Misc.Activations.
g – Internal state activation function that optionally constraints the state, defaults to tf.identity (no constraint)
recurrent – bool, defaults to False. If True, SNU includes recurrent connections inside entire layer.
Constructor method
Methods
add_loss
Add loss tensor(s), potentially dependent on layer inputs.
add_metric
Adds metric tensor to the layer.
add_update
Add update op(s), potentially dependent on layer inputs.
add_variable
Deprecated, do NOT use! Alias for add_weight.
add_weight
Adds a new variable to the layer.
apply
Deprecated, do NOT use!
Overriding build method that creates the variables
Overriding call method that defines the cell dynamics’ graph
compute_mask
Computes an output mask tensor.
compute_output_shape
Computes the output shape of the layer.
compute_output_signature
Compute the output tensor signature of the layer based on the inputs.
count_params
Count the total number of scalars composing the weights.
finalize_state
Finalizes the layers state after updating layer weights.
from_config
Creates a layer from its config.
get_config
Returns the config of the layer.
get_input_at
Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at
Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at
Retrieves the input shape(s) of a layer at a given node.
get_losses_for
Deprecated, do NOT use!
get_output_at
Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at
Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at
Retrieves the output shape(s) of a layer at a given node.
get_updates_for
Deprecated, do NOT use!
get_weights
Returns the current weights of the layer, as NumPy arrays.
set_weights
Sets the weights of the layer, from NumPy arrays.
with_name_scope
Decorator to automatically enter the module name scope.
Attributes
activity_regularizer
Optional regularizer function for the output of this layer.
compute_dtype
The dtype of the layer’s computations.
dtype
The dtype of the layer weights.
dtype_policy
The dtype policy associated with this layer.
dynamic
Whether the layer is dynamic (eager-only); set in the constructor.
inbound_nodes
Deprecated, do NOT use! Only for compatibility with external Keras.
input
Retrieves the input tensor(s) of a layer.
input_mask
Retrieves the input mask tensor(s) of a layer.
input_shape
Retrieves the input shape(s) of a layer.
input_spec
InputSpec instance(s) describing the input format for this layer.
losses
List of losses added using the add_loss() API.
metrics
List of metrics added using the add_metric() API.
name
Name of the layer (string), set in the constructor.
name_scope
Returns a tf.name_scope instance for this class.
non_trainable_variables
Sequence of non-trainable variables owned by this module and its submodules.
non_trainable_weights
List of all non-trainable weights tracked by this layer.
outbound_nodes
Deprecated, do NOT use! Only for compatibility with external Keras.
output
Retrieves the output tensor(s) of a layer.
output_mask
Retrieves the output mask tensor(s) of a layer.
output_shape
Retrieves the output shape(s) of a layer.
stateful
submodules
Sequence of all sub-modules.
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
trainable_variables
Sequence of trainable variables owned by this module and its submodules.
trainable_weights
List of all trainable weights tracked by this layer.
updates
variable_dtype
Alias of Layer.dtype, the dtype of the weights.
variables
Returns the list of all layer variables/weights.
weights
Returns the list of all layer variables/weights.