Source code for qbiocode.data_generation.make_spheres

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import itertools
import json
import os

np.random.seed(42)


[docs] def generate_points_in_nd_sphere(n_s, dim = 3, radius=1, thresh = 0.9): """Generates n random points within a n-d sphere of given radius.""" cnt = 0 points = [] while cnt < n_s: pnts = np.random.rand(dim) * 2 * radius - radius pnts_nrm = np.linalg.norm(pnts) if (pnts_nrm <= radius) & (pnts_nrm >= radius*thresh): points.append(pnts) cnt += 1 points = np.asarray(points) return points
# parameters to vary across the configurations N_SAMPLES = list(range(100, 300, 25)) DIM = list(range(5, 15, 5)) RAD = list(range(5, 20, 5))
[docs] def my_make_spheres( n_s=N_SAMPLES, dim=DIM, radius=RAD, save_path=None ): print("Generating spheres dataset...") if not os.path.exists(save_path): os.makedirs(save_path) # enumerate all possible combinations of parameters based on ranges above configurations = list(itertools.product(*[n_s, dim, radius])) # print(configurations) # print(len(configurations)) count_configs = 1 dataset_config = {} # populate all the configs with the corresponding argument values for n_s, n_d, n_r in configurations: config = "samples={}, dimensions={}, radius={}".format( n_s, n_d, n_r ) # print(count_configs) radius1 = n_r radius2 = radius1 * 0.5 Xa = generate_points_in_nd_sphere(n_s, dim = n_d, radius=radius1, thresh = 0.9) Xb = generate_points_in_nd_sphere(n_s, dim = n_d, radius=radius2, thresh = 0.9) X = np.concatenate((Xa, Xb)) y = [0]*len(Xa) + [1]*len(Xb) # print("Configuration {}/{}: {}".format(count_configs, len(configurations), config)) X_df = pd.DataFrame(X) y_dict = {'class':y} y_df = pd.DataFrame(y_dict) df = pd.concat([X_df, y_df], axis=1) with open( os.path.join( save_path, 'dataset_config.json' ), 'w') as outfile: dataset_config.update({'spheres_data-{}.csv'.format(count_configs): { 'n_samples':n_s, 'dimensions': n_d, 'radius': n_r}}) json.dump(dataset_config, outfile, indent=4) new_dataset = df.to_csv( os.path.join( save_path, 'spheres_data-{}.csv'.format(count_configs)), index=False) count_configs += 1 # fig = plt.figure() # ax = fig.add_subplot(111, projection='3d') # # ax.scatter(X[:, 0], X[:, 1],X[:,2], c= y, cmap='viridis') # ax.scatter(X[:, n_d-3], X[:, n_d-2],X[:, n_d-1], c=y, cmap='viridis') # plt.savefig('spheres_data/spheres_data-{}.png'.format(count_configs)) # print(X.shape) # print(y.shape) return