Source code for qbiocode.data_generation.make_swiss_roll

from sklearn.datasets import make_swiss_roll
import pandas as pd
import numpy as np
import itertools
import json
import os

np.random.seed(42)

# parameters to vary across the configurations
N_SAMPLES = list(range(100, 300, 20))
NOISE = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
HOLE = [True, False]

[docs] def my_make_swiss_roll( n_samples=N_SAMPLES, noise=NOISE, hole=HOLE, save_path=None ): """ This function generates a series of 'swiss roll' data sets. It uses itertools to generate a range of input arguments to pass into the sklearn make_swiss_roll function. A data set is generated for each set of input arguments, which allows the function to produce a variety of different swiss rolls based on varying number of samples (n_samples), noise, and whether or not the swiss roll has a 'hole' in it. Args: n_samples: list of integers The number of sample points on the Swiss Roll. noise: list of floats The standard deviation of the gaussian noise. hole: list of bools If True generates the swiss roll with hole dataset. Returns: df (pandas.DataFrame): Dataset in pandas dataframe with samples in the first column, features in the middle columns, and labels in the last column. """ print("Generating swiss roll dataset...") if not os.path.exists(save_path): os.makedirs(save_path) # enumerate all possible combinations of parameters based on ranges above configurations = list(itertools.product(*[n_samples, noise, hole])) # print(configurations) # print(len(configurations)) count_configs = 1 dataset_config = {} # populate all the configs with the corresponding argument values for n_s, n_n, n_h in configurations: config = "n_samples={}, noise={}, hole={}".format( n_s, n_n, n_h ) # print(count_configs) # iteratively run the function for each combination of arguments X, y = make_swiss_roll( n_samples=n_s, noise=n_n, hole=n_h ) # print("Configuration {}/{}: {}".format(count_configs, len(configurations), config)) dataset = pd.DataFrame(X) dataset['class'] = y with open( os.path.join( save_path, 'dataset_config.json' ), 'w') as outfile: dataset_config.update({'swiss_roll_data-{}.csv'.format(count_configs): {'n_samples': n_s, 'noise': n_n, 'hole': n_h}}) json.dump(dataset_config, outfile, indent=4) new_dataset = dataset.to_csv( os.path.join( save_path, 'swiss_roll_data-{}.csv'.format(count_configs)), index=False) count_configs += 1 # print(X.shape) # print(y.shape) return