Source code for qbiocode.embeddings.compute_autoencoder

import torch
import torch.nn as nn
import torch.optim as optim

# Define the Autoencoder Model
[docs] class ConvAutoencoder(nn.Module): def __init__(self): super(ConvAutoencoder, self).__init__() # Encoder self.encoder = nn.Sequential( nn.Conv2d(7, 64, kernel_size=3, stride=2, padding=1), # (64, 192, 192) nn.ReLU(), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1), # (128, 96, 96) nn.ReLU(), nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1), # (256, 48, 48) nn.ReLU(), nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1), # (512, 24, 24) nn.ReLU(), nn.Conv2d(512, 7, kernel_size=3, stride=2, padding=1), # (7, 16, 16) nn.ReLU() ) # Decoder self.decoder = nn.Sequential( nn.ConvTranspose2d(7, 512, kernel_size=3, stride=2, padding=1, output_padding=1), # (512, 24, 24) nn.ReLU(), nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1), # (256, 48, 48) nn.ReLU(), nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1), # (128, 96, 96) nn.ReLU(), nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1), # (64, 192, 192) nn.ReLU(), nn.ConvTranspose2d(64, 7, kernel_size=3, stride=2, padding=1, output_padding=1), # (7, 384, 384) nn.Sigmoid() )
[docs] def forward(self, x): latent = self.encoder(x) reconstructed = self.decoder(latent) return reconstructed