Configuring

Event Streams provides samples to help you get started with deployments, as described in the planning section. Select one of the samples suited to your requirements to get started:

  • Lightweight without security
  • Development
  • Minimal production
  • Production 3 brokers
  • Production 6 brokers
  • Production 9 brokers

You can modify the samples, save them, and apply custom configuration settings as well. See the following sections for guidance about configuring your instance of Event Streams.

On OpenShift, you can configure and apply them by using the command line or by dragging and dropping them onto the OpenShift Container Platform web console, and editing them.

Note: When applying custom Kafka configuration settings to your Event Streams, check the Kafka documentation to ensure the new configuration settings are consistent and do not cause conflicts.

Checking configuration settings

This page gives information about many configuration options. To see further information about specific configuration options, or to see what options are available, you can use the kubectl explain command. To see information about a specific field, run the following:

kubectl explain eventstreams.<path-of-field>

Where path-of-field is the JSON path of the field of interest.

For example, if you want to see more information about configuring external listeners for Kafka you can run the following command:

kubectl explain eventstreams.spec.strimziOverrides.kafka.listeners.external

Enabling persistent storage

If you want your data to be preserved in the event of a restart, configure persistent storage for Kafka and ZooKeeper in your Event Streams installation.

Note: Ensure you have sufficient disk space for persistent storage.

These settings are specified in the YAML configuration document that defines an instance of the EventStreams custom resource and can be applied when defining a new Event Streams instance under the “Event Streams” operator in the OpenShift Container Platform web console.

  • To enable persistent storage for Kafka, add the storage property under spec.strimziOverrides.kafka
  • To enable persistent storage for ZooKeeper, add the storage property under spec.strimziOverrides.zookeeper

Complete the configuration by adding additional fields to these storage properties as follows:

  1. Specify the storage type in storage.type (for example, "ephemeral" or "persistent-claim").

    Note: When using ephemeral storage, ensure you set retention limits for Kafka topics so that you do not run out of disk space. If message retention is set to long periods and the message volume is high, the storage requirements for the topics could impact the OpenShift nodes that host the Kafka pods, and cause the nodes to run out of allocated disk space, which could impact normal operation.

  2. Specify the storage size in storage.size (for example, "100Gi").
  3. Optionally, specify the storage class in storage.class (for example, "rook-ceph-block-internal").
  4. Optionally, specify the retention setting for the storage if the cluster is deleted in storage.deleteClaim (for example, "true").

An example of these configuration options:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  strimziOverrides:
    kafka:
      # ...
      storage:
        type: "persistent-claim"
        size: "100Gi"
        class: "ceph-block"
    zookeeper:
      # ...
      storage:
        type: "persistent-claim"
        size: "100Gi"
        class: "ceph-block"
# ...

If present, existing persistent volumes with the specified storage class are used after installation, or if a dynamic provisioner is configured for the specified storage class, new persistent volumes are created.

Where optional values are not specified:

  • If no storage class is specified and a default storage class has been defined in the OpenShift Container Platform settings, the default storage class will be used.
  • If no storage class is specified and no default storage class has been defined in the OpenShift Container Platform settings, the deployment will use any persistent volume claims that have at least the set size value.

    Note: An empty string is not the same as not specifying a value for a field. If you include the class field, the field value must be a valid storage class, it cannot be an empty string. An empty string will not be accepted by the operator.

  • If no retention setting is provided, the storage will be retained when the cluster is deleted.

The following example YAML document shows an example EventStreams custom resource with dynamically allocated storage provided using CephFS for Kafka and ZooKeeper. To try this deployment, set the required namespace and accept the license by changing the spec.license.accept value to "true".

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
metadata:
  name: example-storage
  namespace: myproject
  labels:
    backup.eventstreams.ibm.com/component: eventstreams
spec:
  license:
    accept: false
  version: 11.1.0
  adminApi: {}
  adminUI: {}
  apicurioRegistry: {}
  collector: {}
  restProducer: {}
  strimziOverrides:
    kafka:
      replicas: 1
      config:
        offsets.topic.replication.factor: 1
        transaction.state.log.min.isr: 1
        transaction.state.log.replication.factor: 1
      listeners:
        - name: external
          type: route
          port: 9092
          authentication:
            type: scram-sha-512
          tls: true
        - name: plain
          port: 9093
          type: internal
          tls: false
        - name: tls
          port: 9094
          type: internal
          tls: true
          authentication:
            type: tls
      storage:
        type: persistent-claim
        size: 100Gi
        class: rook-ceph-block-internal
        deleteClaim: true
      metricsConfig:
        type: jmxPrometheusExporter
        valueFrom:
          configMapKeyRef:
            key: kafka-metrics-config.yaml
            name: metrics-config
    zookeeper:
      replicas: 1
      storage:
        type: persistent-claim
        size: 100Gi
        class: rook-ceph-block-internal
      deleteClaim: true
      metricsConfig:
        type: jmxPrometheusExporter
        valueFrom:
          configMapKeyRef:
            key: zookeeper-metrics-config.yaml
            name: metrics-config

Configuring encryption between pods

Pod-to-Pod encryption is enabled by default for all Event Streams pods. Unless explicitly overridden in an EventStreams custom resource, the configuration option spec.security.internalTls will be set to TLSv1.2. This value can be set to NONE which will disable Pod-to-Pod encryption.

For example, the following YAML snippet disables encryption between pods:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  # ...
  security:
    # ...
    internalTls: NONE
# ...

Configuring UI and CLI security

By default, accessing the Event Streams UI and CLI requires a user that has been assigned access to Event Streams (see managing access for details).

For accessing both the UI and CLI, Event Streams supports the Salted Challenge Response Authentication Mechanism (SCRAM) and the IBM Cloud Pak foundational services Identity and Access Management (IAM). Additionally, Event Streams also supports Keycloak for accessing the UI.

Note: Identity and Access Management (IAM) authentication is only available on the OpenShift Container Platform with IBM Cloud Pak foundational services 3.x releases. It is not supported on other Kubernetes platforms.

You can choose to change the authentication type of the UI access from IAM to SCRAM-SHA-512 by setting the authentication type in the EventStreams custom resource as follows:

  • If no authentication type is provided, IAM is the default authentication type. You can also specifically configure IAM by setting the adminUI authentication type to iam in the EventStreams custom resource as follows:

     # ...
     spec:
       # ...
       adminUI:
         authentication:
           - type: iam
    
  • You can change the authentication type from the default IAM to SCRAM by setting the adminUI authentication type to scram-sha-512 in the EventStreams custom resource as follows:

     # ...
     spec:
       # ...
       adminUI:
         authentication:
           - type: scram-sha-512
    

    This allows a Kafka user that has been configured for SCRAM authentication to log in to the Event Streams UI and CLI by using the username and password of that Kafka user. For more information about configuring Kafka users, see managing access to Kafka resources.

    When using SCRAM, the Access Control List (ACL) that is configured for the user will determine which parts of the UI are available to the user to access and what CLI commands the user can run. For more information, see permission mappings.

  • To change the authentication type to Keycloak, set the adminUI authentication type to integrationKeycloak in the EventStreams custom resource as follows:

     # ...
     spec:
       # ...
       adminUI:
         authentication:
           - type: integrationKeycloak
    

    Note: Authentication through Keycloak is not supported in the Event Streams CLI. You can authenticate the Event Streams CLI with the SCRAM authentication and then proceed to use an Event Streams instance that is configured with Keycloak. For Keycloak requirements and limitations, see the prerequisites.

  • The login requirement for the UI is disabled when all Kafka authentication and authorization is disabled. This is demonstrated by the proof-of-concept lightweight without security sample.

    Important: When security is not configured, the Producers and the Monitoring dashboards are not available in the UI.

Note: The Event Streams UI and CLI only support the use of one authentication type for a single Event Streams instance. This means that you can only set one authentication type at the same time. The operator will issue an error message if more than one type is provided.

Applying Kafka broker configuration settings

Kafka supports a number of broker configuration settings, typically provided in a properties file.

When creating an instance of Event Streams, these settings are defined in an EventStreams custom resource under a the spec.strimziOverrides.kafka.config property.

The following example uses Kafka broker settings to configure replication for system topics:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      # ...
      config:
        offsets.topic.replication.factor: 1
        transaction.state.log.min.isr: 1
        transaction.state.log.replication.factor: 1

This custom resource can be created using the kubectl command or the OpenShift Container Platform web console under the Event Streams operator page.

You can specify all the broker configuration options supported by Kafka except those managed directly by Event Streams. For further information, see the list of supported configuration options.

After deployment, these settings can be modified by updating the EventStreams custom resource.

Applying Kafka rack awareness

Kafka rack awareness is configured by setting the rack property in the EventStreams custom resource using the zone label as the topology key in the spec.strimziOverrides.kafka.rack field. This key needs to match the zone label name applied to the nodes.

Note: Before this is applied, ensure the Kafka cluster role for rack awareness has been applied.

The following example sets the rack topologyKey to topology.kubernetes.io/zone:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      # ...
      rack:
        topologyKey: topology.kubernetes.io/zone
      # ...

Setting geo-replication nodes

You can install geo-replication in a cluster to enable messages to be automatically synchronized between local and remote topics. A cluster can be a geo-replication origin or destination. Origin clusters send messages to a remote system, while destination clusters receive messages from a remote system. A cluster can be both an origin and a destination cluster at the same time.

To enable geo-replication, create an EventStreamsGeoReplicator custom resource alongside the EventStreams custom resource. This can be defined in a YAML configuration document under the Event Streams operator in the OpenShift Container Platform web console.

When setting up geo-replication, consider the number of geo-replication worker nodes (replicas) to deploy and configure this in the spec.replicas property.

Ensure that the following properties match the name of the Event Streams instance:

  • metadata.name
  • metadata.labels["eventstreams.ibm.com/cluster"]

For example, to configure geo-replication with 2 replicas for an Event Streams instance called sample-three in the namespace myproject, create the following EventStreamsGeoReplicator configuration:

apiVersion: eventstreams.ibm.com/v1beta1
kind: EventStreamsGeoReplicator
metadata:
  labels:
    eventstreams.ibm.com/cluster: sample-three
  name: sample-three
  namespace: myproject
spec:
  # ...
  replicas: 2

Note: Geo-replication can be deployed or reconfigured at any time. For more information, see Setting up geo-replication.

Configuring access

You can configure external access to the following services representing Event Streams components:

  • The Event Streams UI: A graphical user interface you can log in to from a web browser to access and administer your Event Streams instance. The UI requires the Admin API service to be enabled.
  • The Admin API: A RESTful administration API that can be used for managing functions of your Event Streams instance (for example, creating topics).
  • The Apicurio Registry: The schema registry in Event Streams to store message schemas. Disable if you do not require schemas for your messages.
  • The REST Producer: The REST producer API is a scalable REST interface for producing messages to Event Streams over a secure HTTP endpoint.

On the OpenShift Container Platform, external access to these services are automatically configured by using routes (unless they are not included in the Event Streams installation).

On other Kubernetes platforms, all services have internal endpoints configured, creating access to them from within the cluster. To expose any service outside your cluster, configure external access by setting up a Kubernetes ingress controller and configuring the EventStreams custom resource to use ingress.

Note: When using ingress, ensure you install and run an ingress controller on your Kubernetes platform. The SSL passthrough must be enabled in the ingress controller and ingresses for your Event Streams services to work. Refer to your ingress controller documentation for more information.

The following sections provide more information and examples about setting up external access to these Event Streams services and Kafka.

REST services access

The REST services for Event Streams are configured with defaults for the container port, type, TLS version, certificates, and authentication mechanisms. If the Kafka listeners have been configured without authentication requirements, then the authentication mechanisms are automatically removed from the REST endpoints.

The schema for REST endpoint configuration is described in the following table, followed by an example of an endpoint configuration for the Admin API that uses routes, and then an ingress example. In these examples, the potential values for <component> in spec.<component>.endpoints are:

  • adminApi for the Admin API
  • restProducer for the REST Producer
  • apicurioRegistry for the Apicurio Registry

Note: If you are overriding the certificates for any of the REST endpoints (certOverrides) with your own certificates, you can provide the external CA certificate that signed them in a secret. If you provide the external CA certificates, they will be included in the truststore you can download from the Event Streams UI and CLI.

Key Type Description
name String Name to uniquely identify the endpoint among other endpoints in the list for a component.
containerPort Integer A unique port to open on the container that this endpoint will serve requests on. Restricted ranges are 0-1000 and 7000-7999.
type String [internal, route, ingress] Event Streams REST components support internal, route, or ingress type endpoints.
tlsVersion String [TLSv1.2,TLSv1.3,NONE] Specifies the TLS version where NONE disables HTTPS. The default is TLSv1.2.
authenticationMechanisms List of Strings List of authentication mechanisms to be supported at this endpoint. By default, all authentication mechanisms that are defined in the Kafka listeners are enabled. Optionally, you can configure a subset, or none ([]).
Note: iam-bearer is only supported when you have IBM Cloud Pak foundational services installed on the OpenShift Container Platform.
certOverrides.certificate String The name of the key in the provided certOverrides.secretName secret that contains the Base64-encoded certificate.
certOverrides.key String The name of the key in the provided certOverrides.secretName secret that contains the Base64-encoded key.
certOverrides.secretName String The name of the secret in the instance namespace that contains the encoded certificate and key to secure the endpoint with.
host String (DNS rules apply) The hostname for accessing the service. This is required for ingress. On the OpenShift Container Platform, this is the default hostname that an OpenShift route generates, and you can override the default hostname by providing a different one here.
class String Identifies the ingress controller when you have more than one controller installed.
annotations String Optionally, you can use annotations to configure different options for an ingress resource.

Routes example

Example of an endpoint configuration for the Admin API that uses routes:

# ...
spec:
  externalCACertificates:
    secretName: <name-of-the-secret>
  # ...
  adminApi:
    # ...
    endpoints:
      - name: routes-example
        containerPort: 9080
        type: route
        tlsVersion: TLSv1.3
        authenticationMechanisms:
          - iam-bearer
          - tls
          - scram-sha-512
        certOverrides:
            certificate: mycert.crt
            key: mykey.key
            secretName: custom-endpoint-cert
        host: example-host.apps.example-domain.com

Where <name-of-the-secret> is the name of the secret that contains the external CA certificates.

Note: Changing an endpoint in isolation might have adverse effects if Kafka is configured to require authentication and the configured endpoint has no authentication mechanisms specified. In such cases, a warning message might be displayed in the status conditions for the instance.

Ingress example

Example of an endpoint configuration for the Admin API that uses ingress and NGINX as the ingress controller:

# ...
spec:
  # ...
  adminApi:
    # ...
    endpoints:
      - name: ingress-example
        type: ingress
        host: <hostname-or-ip-address>
        class: nginx
        containerPort: 8001

Cipher suite override

You can override the default set of cipher suites for the Event Streams REST components. Overriding the default set and enabling alternative cipher suites should only be done for specific scenarios, for example, to facilitate connectivity of legacy systems. You can set the override through the CIPHER_SUITES environment variable as shown in the following example:

# ...
spec:
  # ...
  restProducer:
    # ...
    env:
      - name: CIPHER_SUITES
        value: >-
          TLS_RSA_WITH_AES_256_CBC_SHA,TLS_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

Kafka access

Sample configurations provided for Event Streams typically include an external listener for Kafka and varying internal listener types by default. The supported external listener can be of type route or ingress, and it can have one of the following authentication mechanism types:

  • Mutual TLS (tls)
  • SCRAM-SHA-512 (scram-sha-512)
  • OAuth (oauth)

Any number of external listeners can be configured, each with any of the supported authentication mechanisms.

Note: If you are overriding the certificates for any of the Kafka listeners with your own certificates, ensure you provide the external CA certificates that signed them in a secret.

Internal access

Internal listeners for Kafka can also be configured by setting the listener type: to internal. Each of these can be configured to have any of the authentication mechanism types (Mutual TLS, SCRAM-SHA-512, or OAuth). The following example shows 2 internal listeners configured: the first is set to use SCRAM authentication, while the second listener is set to use mutual TLS.

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      listeners:
        - name: intplain
          type: internal
          port: 9092
          tls: false
          authentication:
            type: scram-sha-512
        - name: inttls
          type: internal
          port: 9093
          tls: true
          authentication:
            type: tls

When secure listeners are configured, Event Streams will automatically generate cluster and client CA certificates, and a valid certificate for the listener endpoint. The generated CA certificates and the certificate for the endpoint can be replaced by provided certificates as described in providing certificate overrides.

Routes example

The following example snippet defines 2 external listeners that expose the Kafka brokers with 2 OpenShift Container Platform routes, one with SCRAM-SHA-512 authentication and one with Mutual TLS enabled.

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      listeners:
        - name: extscram
          type: route
          port: 9092
          tls: true
          authentication:
            type: scram-sha-512
        - name: exttls
          type: route
          port: 9093
          tls: true
          authentication:
            type: tls

Ingress example

To use ingress, you define ingress as the external listener and specify the hostname or IP address for your Kafka bootstrap servers. You also define the ingress class for your ingress controller.

The following example snippet defines an external listener type for ingress that uses NGINX as the ingress controller (class: nginx), providing external access to 3 Kafka brokers, with SCRAM-SHA-512 authentication enabled.

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      listeners:
        - name: external
          type: ingress
          port: 9094
          tls: true
          authentication:
            type: scram-sha-512
          configuration:
            bootstrap:
              host: <hostname-or-ip-address>
            brokers:
              - broker: 0
                host: <hostname-or-ip-address>
              - broker: 1
                host: <hostname-or-ip-address>
              - broker: 2
                host: <hostname-or-ip-address>
            class: nginx
        - name: tls
          type: internal
          port: 9093
          tls: true
          authentication:
            type: tls

When secure listeners are configured, Event Streams will automatically generate cluster and client CA certificates, and a valid certificate for the listener endpoint. The generated CA certificates and the certificate for the endpoint can be replaced by provided certificates as described in providing certificate overrides.

Enabling OAuth

Open Authorization (OAuth) is an open standard for authentication and authorization that allows client applications secure delegated access to specified resources. OAuth works over HTTPS and uses access tokens for authorization rather than credentials.

Enable OAuth authentication

To configure OAuth authentication, configure a Kafka listener with type oauth, and set the listener to use one of the following token validation methods:

  • Fast local JSON Web Token (JWT) validation: a signed token is verified against the OAuth authentication server’s public certificate, and a check ensures that the token has not expired on the Kafka cluster. This means that the OAuth authorization server does not need to be contacted, which speeds up the validation.

    Important: Local JWT validation does not check the validity of the token with the OAuth authorization server each time the client attempts to authenticate. This means tokens that have not expired are valid even if the client that used the token has been revoked. As the token expiry time is used to identify the token’s validity, consider setting short token expiry times when configuring JWT validation, keeping the grace period as short as possible.

  • Token validation by using an introspection endpoint: the validation of the token is performed on the OAuth authorization server. This is a slower mechanism than the JWT validation method, but ensures that there is no grace period for revoked clients. As soon as a client is revoked, the token will become invalid, regardless of the expiration of the token.

Event Streams supports 2 types of SASL mechanisms: OAUTHBEARER or PLAIN. By default, OAuth authentication uses OAUTHBEARER SASL mechanism, which is the most secure mechanism.

Important: For clients that do not support the OAUTHBEARER authentication mechanism, you can configure the cluster to use the PLAIN mechanism by setting the enableOauthBearer property to false (default setting is true for OAUTHBEARER). For more information, see OAuth 2.0 authentication mechanisms.

Configuring OAuth to use fast local JWT validation

To configure an OAuth listener to use fast local JWT validation authentication, add the following snippet to your EventStreams custom resource, and edit the settings as follows:

  • Add the respective URIs of the OAuth authentication server to the jwksEndpointUri and validIssuerUri properties.
  • Create a secret that contains the public CA certificate of the OAuth authentication Server, and reference this secret in the tlsTrustedCertificates property of the listener configuration. The certificate element in the tlsTrustedCertificates references the secret key that contains the CA certificate.
# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      listeners:
        - name: extoauth
          port: 9094
          tls: true
          authentication:
            type: oauth
            jwksEndpointUri: <OAuth-authentication-server-JWKS-certificate-endpoint>
            maxSecondsWithoutReauthentication: 3600
            tlsTrustedCertificates:
              - certificate: <CA-certificate-secret-key>
                secretName: <CA-certificate-secret-name>
            userNameClaim: preferred_username
            validIssuerUri: <OAuth-authentication-server-token-issuer-endpoint>
          type: route

The snippet provided shows a configuration containing the most commonly used properties. For information about further OAuth properties, see Using OAuth 2.0 token-based authentication.

Configuring OAuth to use token validation by using an introspection endpoint

To configure an OAuth listener to use introspection endpoint token validation, add the following snippet to your EventStreams custom resource, and edit the settings as follows:

  • Add the respective URIs of the OAuth authentication server to the validIssuerUri and introspectionEndpointUri properties.
  • Create a secret that contains the public CA certificate of the OAuth authentication Server, and reference this secret in the tlsTrustedCertificates property of the listener configuration. The certificate element in the tlsTrustedCertificates references the secret key that contains the CA certificate.
  • Create another secret that contains the secret value of the userid as defined in the clientId property of the configuration, and reference this secret in the clientSecret property of the configuration. In the key property, add the key from the Kubernetes secret that contains the secret value for the userid.
# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      listeners:
        - name: extoauth
          port: 9094
          tls: true
          authentication:
            type: oauth
            clientId: <client-id>
            clientSecret:
              secretName: <secret-name-containing-clientid-password>
              key: <secret-key-containing-client-password>
            validIssuerUri: <OAuth-authentication-server-token-issuer-endpoint>
            introspectionEndpointUri: <OAuth-authentication-server-token-introspection-endpoint>
            userNameClaim: preferred_username
            maxSecondsWithoutReauthentication: 3600
            tlsTrustedCertificates:
              - certificate: <CA-certificate-secret-key>
                secretName: <CA-certificate-secret-name>
          type: route

The snippet provided shows a configuration containing the most commonly used properties. For information about further OAuth properties, see Using OAuth 2.0 token-based authentication.

Enable OAuth authorization

To use OAuth for authorizing access to Kafka resources in Event Streams, enable OAuth in the Event Streams custom resource, and then configure your Access Control List (ACL) rules in your selected OAuth server.

To enable OAuth authorization for Event Streams, add the following snippet to your EventStreams custom resource, and edit the settings as follows:

  • Ensure you set the delegateToKafkaAcls property to true. If this property is set to false, some Event Streams components will not work as expected.
  • If you configure OAuth authorization, include in the superUsers property the user IDs of the Identity and Access Management (IAM) admin users and Kubernetes Cluster admin users that administer Event Streams through the UI or the CLI. If you are not using OAuth authorization, you do not need to specify any superUsers.
# ...
spec:
  # ...
  strimziOverrides:
    # ...
    kafka:
      authorization:
        clientId: <client-id>
        delegateToKafkaAcls: true
        tlsTrustedCertificates:
          - certificate: ca.crt
            secretName: keycloak-ca-cert
        tokenEndpointUri: <OAuth-authentication-server-token-endpoint>
        type: keycloak
        superUsers:
          - "admin"
          - "kubeadmin"

The snippet provided shows a configuration containing the most commonly used properties. For information about further OAuth properties, see configuring an OAuth 2.0 authorization server.

Configuring node affinity for components

You can configure Event Streams components to run on nodes with specific labels by using node affinity. Node affinity is configured as part of the component’s pod template in the EventStreams custom resource.

For REST services, you can configure affinity as follows:

# ...
spec:
  # ...
  <component>:
    # ...
    template:
      pod:
        affinity:
        # ...

Where <component> is one of the following values: adminApi, adminUI, restProducer, or apicurioRegistry.

For Kafka and ZooKeeper, you can configure affinity as follows:

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    <component>:
      # ...
      template:
        pod:
          affinity:
          # ...

Where <component> is either kafka or zookeeper.

The format of the affinity property matches the Kubernetes specification. For example, if a node is labeled with mykey=myvalue, the affinity would contain the following settings:

# ...
template:
  pod:
    affinity:
      nodeAffinity:
        requiredDuringSchedulingIgnoredDuringExecution:
          nodeSelectorTerms:
            - matchExpressions:
              - key: mykey
                operator: In
                values:
                - myvalue

You can also configure architecture-based node affinity. For example, to configure a component to deploy on Linux on IBM z13 (s390x), Linux on IBM Power Systems (ppc64le), and Linux 64-bit (amd64) systems, you can use the following settings:

Event Streams 11.3.2 iconNode affinities for Linux on IBM Power Systems (ppc64le), Linux 64-bit (amd64) systems , and Linux on IBM z13 (s390x) architectures are added by default. However, you can specify node affinities in the Event Streams custom resource to deploy pods only on the specific architecture.

# ...
template:
  pod:
    affinity:
      nodeAffinity:
        requiredDuringSchedulingIgnoredDuringExecution:
          nodeSelectorTerms:
            - matchExpressions:
              - key: kubernetes.io/arch
                operator: In
                values:
                - amd64
                - s390x
                - ppc64le

Enabling collection of producer metrics

Producer metrics provide information about the health of your Kafka topics through metrics gathered from producing applications. You can view the information in the Producers dashboard.

Gathering producer metrics is done through a Kafka Proxy, and is not enabled by default. To enable metrics gathering and have the information displayed in the dashboard, enable the Kafka Proxy by adding the spec.kafkaProxy property to the EventStreams custom resource as follows:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  kafkaProxy: {}
# ...

Important: Enabling the Kafka Proxy to gather producer metrics places an intermediary between your producing clients and your Kafka brokers. This adds latency to any traffic to your Kafka brokers. Consider the performance implications of having the proxy in front of your Kafka brokers. You can also leave the proxy disabled and gather producer metrics from the clients directly by using JMX.

Configuring external monitoring through Prometheus

Metrics provide information about the health and operation of the Event Streams instance.

Metrics can be enabled for Kafka, ZooKeeper, geo-replicator, and Kafka Connect pods.

Note: Kafka metrics can also be exposed externally through JMX by configuring external monitoring tools.

Kafka metrics can be enabled by setting spec.strimziOverrides.kafka.metricsConfig in the EventStreams custom resource to point to the metrics-config ConfigMap. For example:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  strimziOverrides:
    kafka:
      # ...
      metricsConfig:
        type: jmxPrometheusExporter
        valueFrom:
          configMapKeyRef:
            key: kafka-metrics-config.yaml
            name: metrics-config
# ...

ZooKeeper metrics can be enabled by setting spec.strimziOverrides.zookeeper.metricsConfig in the EventStreams custom resource to point to the metrics-config ConfigMap. For example:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  strimziOverrides:
    zookeeper:
      # ...
      metricsConfig:
        type: jmxPrometheusExporter
        valueFrom:
          configMapKeyRef:
            key: zookeeper-metrics-config.yaml
            name: metrics-config
# ...

The following is the default metrics-config ConfigMap in YAML format:

kind: ConfigMap
apiVersion: v1
metadata:
  name: metrics-config
data:
  kafka-metrics-config.yaml: |
    lowercaseOutputName: true
    rules:
    - attrNameSnakeCase: false
      name: kafka_controller_$1_$2_$3
      pattern: kafka.controller<type=(\w+), name=(\w+)><>(Count|Value|Mean)
    - attrNameSnakeCase: false
      name: kafka_server_BrokerTopicMetrics_$1_$2
      pattern: kafka.server<type=BrokerTopicMetrics, name=(BytesInPerSec|BytesOutPerSec)><>(Count)
    - attrNameSnakeCase: false
      name: kafka_server_BrokerTopicMetrics_$1__alltopics_$2
      pattern: kafka.server<type=BrokerTopicMetrics, name=(BytesInPerSec|BytesOutPerSec)><>(OneMinuteRate)
    - attrNameSnakeCase: false
      name: kafka_server_ReplicaManager_$1_$2
      pattern: kafka.server<type=ReplicaManager, name=(\w+)><>(Value)
  zookeeper-metrics-config.yaml: |
    lowercaseOutputName: true
    rules: []

Geo-replicator metrics can be enabled by setting spec.metrics to {} in the KafkaMirrorMaker2 custom resource. For example:

apiVersion: eventstreams.ibm.com/v1alpha1
kind: KafkaMirrorMaker2
# ...
spec:
  # ...
  metrics: {}
# ...

Note: The Event Streams operator automatically applies a KafkaMirrorMaker2 custom resource when a EventStreamsGeoReplicator custom resource is created. Metrics can then be enabled by editing the generated KafkaMirrorMaker2 custom resource.

Kafka Connect metrics can be enabled by setting spec.metrics to {} in the KafkaConnect custom resource. For example:

apiVersion: eventstreams.ibm.com/v1beta2
kind: KafkaConnect
# ...
spec:
  # ...
  metrics: {}
# ...

To complement the default Kafka metrics, you can configure Event Streams to publish additional information about your Event Streams instance by adding the spec.kafkaProxy property to the EventStreams custom resource as follows:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  kafkaProxy: {}
# ...

Note: For details about viewing metrics information, see the cluster health and topic health sections.

Configuring external monitoring through JMX

You can use third-party monitoring tools to monitor the deployed Event Streams Kafka cluster by collecting Kafka metrics. To set this up, you need to:

  • Have a third-party monitoring tool set up to be used within your OpenShift Container Platform cluster.
  • Enable access to the broker JMX port by setting spec.strimizOverrides.kafka.jmxOptions.

    apiVersion: eventstreams.ibm.com/v1beta2
    kind: EventStreams
    # ...
    spec:
      # ...
      strimziOverrides:
        # ...
        kafka:
          jmxOptions: {}
    
  • Include any configuration settings for Event Streams as required by your monitoring tool. For example, Datadog’s autodiscovery requires you to annotate Kafka broker pods (strimziOverrides.kafka.template.pod.metadata.annotations)
  • Configure your monitoring applications to consume JMX metrics.

Configuring the Kafka Exporter

You can configure the Kafka Exporter to expose additional metrics to Prometheus on top of the default ones. For example, you can obtain the consumer group lag information for each topic.

Kafka Exporter can be enabled by setting spec.kafkaExporter to {} in the EventStreams custom resource. For example:

  apiVersion: eventstreams.ibm.com/v1beta2
  kind: EventStreams
  # ...
  spec:
    # ...
    strimziOverrides:
      # ...
      kafkaExporter: {}

You can also configure Kafka Exporter using a regex to expose metrics for a collection of topics and consumer groups that match the expression. For example, to enable JMX metrics collection for the topic orders and the group buyers, configure the EventStreams custom resource as follows:

  apiVersion: eventstreams.ibm.com/v1beta2
  kind: EventStreams
  # ...
  spec:
    # ...
    strimziOverrides:
      # ...
      kafkaExporter:
        groupRegex: buyers
        topicRegex: orders

For more information about configuration options, see configuring the Kafka Exporter.

Configuring the JMX Exporter

You can configure the JMX Exporter to expose JMX metrics from Kafka brokers, ZooKeeper nodes, and Kafka Connect nodes to Prometheus.

To enable the collection of all JMX metrics available on the Kafka brokers and ZooKeeper nodes, configure the EventStreams custom resource as follows:

  apiVersion: eventstreams.ibm.com/v1beta2
  kind: EventStreams
  # ...
  spec:
  # ...
  strimziOverrides:
    kafka:
      metricsConfig:
        type: jmxPrometheusExporter
        valueFrom:
          configMapKeyRef:
            key: kafka-metrics-config.yaml
            name: metrics-config
      # ...
    zookeepers:
      #
    # ...

For more information about configuration options, see the following documentation:

Enabling and configuring Kafka Bridge

With Kafka Bridge, you can connect client applications to your Event Streams Kafka cluster over HTTP, providing a standard web API connection to Event Streams rather than the custom Kafka protocol.

To enable Kafka Bridge for Event Streams, create a KafkaBridge custom resource alongside the EventStreams custom resource. This can be defined in a YAML configuration document under the Event Streams operator in the OpenShift Container Platform web console.

For example, to enable Kafka Bridge for Event Streams in the namespace es-kafka-bridge, create the following KafkaBridge configuration, where spec.bootstrapServers is the address of your Event Streams Kafka cluster, and spec.http.port is the port number for Kafka Bridge to access your cluster (default is 8080):

apiVersion: eventstreams.ibm.com/v1beta2
kind: KafkaBridge
metadata:
  name: my-bridge
  namespace: es-kafka-bridge
  labels:
    eventstreams.ibm.com/cluster: <cluster-name>
    backup.eventstreams.ibm.com/component: kafkabridge
spec:
  replicas: 1
  bootstrapServers: 'test.kafka-bootstrap.es-kafka-bridge:9093'
  http:
     port: 8080
  template:
    bridgeContainer:
      securityContext:
        allowPrivilegeEscalation: false
        capabilities:
          drop:
            - ALL
        privileged: false
        readOnlyRootFilesystem: true
        runAsNonRoot: true
    pod:
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                  - key: kubernetes.io/arch
                    operator: In
                    values:
                      - amd64
                      - s390x
                      - ppc64le

Depending on your setup and purpose of deployment, you can add more replicas which sets the number of Kafka Bridge instances to run. For production environments, for example, consider deploying more than one replica for resilience.

After enabling Kafka Bridge, you can expose the service outside your cluster for external clients to connect to it as described in exposing services for external access.

For more information about Kafka Bridge, including further configuration options and usage, see connecting with Kafka Bridge.

Enabling and configuring Cruise Control

To enable Cruise Control, set the spec.strimizOverrides.cruiseControl property to {} in the EventStreams custom resource:

apiVersion: eventstreams.ibm.com/v1beta2
kind: EventStreams
# ...
spec:
  # ...
  strimziOverrides:
    # ...
    cruiseControl: {}

Note: Ensure you have more than 1 Kafka broker configured to take advantage of Cruise Control. All sample configurations provided have more than 1 broker except the Lightweight without security sample.

When enabled, you can use the default Cruise Control configuration to optimize your Kafka cluster. You can also specify your required configuration as described in the following sections.

When configuring Cruise Control, you can define the following settings in the EventStreams custom resource:

  • Main optimization goals in spec.strimziOverrides.cruiseControl.config.goals
  • Default optimization goals in spec.strimziOverrides.cruiseControl.config["default.goals"]

    Note: If you do not set main optimization goals and default goals, then the Cruise Control defaults are used.

  • Hard goals in spec.strimziOverrides.cruiseControl.config["hard.goals"]
  • The capacity limits for broker resources, which Cruise Control uses to determine if resource-based optimization goals are being broken. The spec.strimziOverrides.cruiseControl.brokerCapacity property defines the Kafka broker resource capacities that Cruise Control will optimize around.

Cruise Control includes a number of configuration options. You can modify these configuration options for Event Streams, except the options managed directly by Strimzi.

When enabled, you can use Cruise Control and the KafkaRebalance custom resources to optimize your deployed Event Streams Kafka cluster.

Cruise Control defaults

Event Streams supports a subset of the Cruise Control goals. If the main optimization goals and default goals (spec.strimziOverrides.cruiseControl.config.goals and spec.strimziOverrides.cruiseControl.config["default.goals"], respectively) are not set, then the Cruise Control configuration defaults to the following goals (in descending order of priority):

  • com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.PotentialNwOutGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuUsageDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.TopicReplicaDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderReplicaDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.LeaderBytesInDistributionGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.PreferredLeaderElectionGoal

For more information about the optimization goals, see the Cruise Control documentation.

Main optimization goals

The main optimization goals define the goals available to be used in Cruise Control operations. Goals not listed cannot be used.

The spec.strimziOverrides.cruiseControl.config.goals property defines the list of goals Cruise Control can use.

The main optimization goals have defaults if not configured.

For example, if you want Cruise Control to only consider using com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal and com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal, set values for spec.strimziOverrides.cruiseControl.config.goals property as follows:

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    cruiseControl:
      # ...
      config:
        # ...
        goals: >
          com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal,
          com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal

Default goals

The default goals define the set of goals that you want your cluster to meet most often. They are set in the spec.strimziOverrides.cruiseControl.config["default.goals"] property. By default, every 15 minutes, Cruise Control will use the current state of your Kafka cluster to generate a cached optimization proposal by using the configured default.goals list.

If no default goals are set, the main optimization goals are used as the default optimization goals.

For example, if you want Cruise Control to always consider meeting com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal, com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal, and com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuUsageDistributionGoal, set values for the spec.strimziOverrides.cruiseControl.config["default.goals"] property as follows:

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    cruiseControl:
      # ...
      config:
        # ...
        default.goals: >
          com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundUsageDistributionGoal,
          com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundUsageDistributionGoal,
          com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuUsageDistributionGoal

Hard goals

Hard goals define the list of goals that must be met by an optimization proposal and cannot be violated in any of the optimization functions of Cruise Control.

Hard goals can be set by the spec.strimziOverrides.cruiseControl.config["hard.goals"] property.

In Cruise Control, the following main optimization goals are preset as hard goals:

  • com.linkedin.kafka.cruisecontrol.analyzer.goals.RackAwareGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.ReplicaCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal
  • com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal

For example, to configure Cruise Control to always consider com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal and com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal in an optimization proposal, provide these goals as values in the spec.strimziOverrides.cruiseControl.config["hard.goals"] property as follows:

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    cruiseControl:
      # ...
      config:
        # ...
        hard.goals: >
          com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal,
          com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal

Note: The longer the list of hard goals, the less likely it is that Cruise Control will be able to find a viable optimization proposal. Consider configuring fewer hard goals and more goals for the optimization proposals in the KafkaRebalance custom resource.

Cruise Control BrokerCapacity

Specifies capacity limits for broker resources.

Use the spec.strimziOverrides.cruiseControl.brokerCapacity property to define capacity limits for Kafka broker resources. Cruise Control will use the set limits to determine if resource-based optimization goals are being broken. The following table provides information about the resource capacity settings, the goals they affect, and the units they use:

brokerCapacity Goal unit
inboundNetwork com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkInboundCapacityGoal KB/s
outboundNetwork com.linkedin.kafka.cruisecontrol.analyzer.goals.NetworkOutboundCapacityGoal KB/s
disk com.linkedin.kafka.cruisecontrol.analyzer.goals.DiskUsageDistributionGoal Bytes
cpuUtilization com.linkedin.kafka.cruisecontrol.analyzer.goals.CpuUsageDistributionGoal Percent (0-100)

Note: Ensure you add the unit when configuring a brokerCapacity key, except for cpuUtilization where the percentage is not required.

For example, to configure Cruise Control to optimize around having an inbound network byte rate of 1000 kilobytes per second and a cpu utilization of 80 percent, configure the spec.strimziOverrides.cruiseControl.brokerCapacity property as follows:

# ...
spec:
  # ...
  strimziOverrides:
    # ...
    cruiseControl:
      # ...
      brokerCapacity:
        # ...
        inboundNetwork: 1000KB/s
        # Optimize for CPU utilization of 80%
        cpuUtilization: 80

Using your own certificates

Event Streams offers the capability to provide your own CA certificates and private keys instead of using the ones generated by the operator. If a CA certificate and private key are provided, the listener certificate is generated automatically and signed using the CA certificate.

Event Streams also offers the capability to provide your own certificates.

Note: You must complete the process of providing your own certificates before installing an instance of Event Streams.

You must provide your own X.509 certificates and keys in PEM format with the addition of a PKCS12-formatted certificate and the CA password. If you want to use a CA which is not a Root CA, you have to include the whole chain in the certificate file. Include the chain in the following order:

  1. The cluster or client CA
  2. One or more intermediate CAs
  3. The root CA

Ensure you configure each CA in the chain as a CA with the X509v3 Basic Constraints.

Providing a CA certificate and key

Note: In the following instructions, the CA public certificate file is denoted CA.crt and the CA private key is denoted CA.key.

As Event Streams also serves the truststore in PKCS12 format, generate a .p12 file containing the relevant CA Certificates. When generating your PKCS12 truststore, ensure that the truststore does not contain the CA private key. This is important because the .p12 file will be available to download from the Event Streams UI and distributed to clients.

The following is an example showing how to use the Java keytool utility to generate a PKCS12 truststore that does not contain a private key:

keytool -import -file <ca.pem> -keystore ca.jks
keytool -importkeystore -srckeystore ca.jks -srcstoretype JKS -deststoretype PKCS12 -destkeystore ca.p12

Note: Using OpenSSL PKCS12 commands to generate a truststore without private keys can break the cluster, because the resulting truststore is not compatible with Java runtimes.

One way to test that the truststore is compatible and contains the correct certificates is to use the following java keytool utility command:

keytool -list -keystore ca.p12 -storepass <keystore password>

The cluster and client certificates, and keys must be added to secrets in the namespace that the Event Streams instance is intended to be created in. The naming of the secrets and required labels must follow the conventions detailed in the following command templates.

The following commands can be used to create and label the secrets for custom certificates and keys. The templates demonstrate providing cluster certificates but the same commands can be re-used substituting cluster with clients in each secret name.

For each command, provide the intended name and namespace for the Event Streams instance.

kubectl create --namespace <namespace> secret generic <instance-name>-cluster-ca --from-file=ca.key=CA.key
kubectl label --namespace <namespace> secret <instance-name>-cluster-ca eventstreams.ibm.com/kind=Kafka eventstreams.ibm.com/cluster=<instance-name>
kubectl annotate --namespace <namespace> secret <instance-name>-cluster-ca eventstreams.ibm.com/ca-key-generation=0
kubectl create --namespace <namespace> secret generic <instance-name>-cluster-ca-cert --from-file=ca.crt=CA.crt --from-file=ca.p12=CA.p12 --from-literal=ca.password='<CA_PASSWORD>'
kubectl label --namespace <namespace> secret <instance-name>-cluster-ca-cert eventstreams.ibm.com/kind=Kafka eventstreams.ibm.com/cluster=<instance-name>
kubectl annotate --namespace <namespace> secret <instance-name>-cluster-ca-cert eventstreams.ibm.com/ca-cert-generation=0

Note: The eventstreams.ibm.com/ca-cert-generation and eventstreams.ibm.com/ca-key-generation values identify whether certificates are being renewed or not. Only set 0 for these values if you have not installed an instance of Event Streams yet. For more information about when to amend these annotations, see renewing certificates.

To make use of the provided secrets, Event Streams will require the following overrides to be added to the custom resource.

spec:
  # ...
  strimziOverrides:
    clusterCa:
      generateCertificateAuthority: false

  # And/Or

    clientsCa:
      generateCertificateAuthority: false

For information about configuring the renewal settings for certificates, see renewing certificates.

Providing listener certificates

To use TLS hostname verification with your own Kafka listener certificates, ensure you use the correct Subject Alternative Names (SANs) for each listener. The certificate SANs must specify hostnames for:

  • All of the Kafka brokers in your cluster

  • The Kafka cluster bootstrap service

You can use wildcard certificates if they are supported by your CA.

For internal listeners, the hostnames will be service names. For external listeners, the hostnames will be present in the ingress or route definitions.

Create a secret containing the private key and server certificate:

kubectl create secret generic my-secret --from-file=my-listener-key.key --from-file=my-listener-certificate.crt

To make use of the secret, Event Streams will require the following overrides to be added to the custom resource.

spec:
  # ...
  externalCACertificates:
    secretName: <name-of-the-secret>
  strimziOverrides:
    kafka:
      listeners:
        - name: external
          # ...
          configuration:
            brokerCertChainAndKey:
              certificate: my-listener-certificate.crt
              key: my-listener-key.key
              secretName: my-secret

Where <name-of-the-secret> is the name of the secret that contains the external CA certificates.

Providing external CA certificates

If you provide your own certificates for Kafka listeners instead of using the ones generated by Event Streams, you must create a secret containing the external public certificate authority (CA) certificates that were used to sign those certificates.

You can also provide your own certificates for any of the REST component endpoints, and include the external CA certificates in the secret for those as well if you want to make them available to download in Event Streams.

After you provide the secrets, both the Event Streams cluster CA certificates and the external CA certificates will be included in the PEM or PKCS12 file that you can download by using the Event Streams UI or CLI. This will ensure that clients can connect to any of the endpoints in the cluster regardless of whether they have overridden certificates or not.

To provide the external CA certificates to the Event Streams cluster, you must create a secret that contains a ca.crt element that has all the required external public CA certificates in PEM format. If a CA chain was used to sign the overriding certificates, ensure that the full CA chain is provided in the secret. Include the chain in the following order:

  1. The CA that signed the Kafka listener (brokerCertChainAndKey) or REST endpoint certificates
  2. Any intermediate CAs
  3. The root CA

The following is the format of an external CA file with a Single CA Certificate to upload to the secret:

-----BEGIN CERTIFICATE-----
<certificate-data>
-----END CERTIFICATE-----

The following is the format of an external CA file with a CA Certificate chain to upload to the secret:

-----BEGIN CERTIFICATE-----
<certificate-data>
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
<certificate-data>
-----END CERTIFICATE-----
...
-----BEGIN CERTIFICATE-----
<certificate-data>
-----END CERTIFICATE-----

  1. To create the secret that contains the external CA certificate, run the following command:

    kubectl create secret generic <secret-name> --from-file=ca.crt=<path to external ca certificates file
    
  2. After the secret is created, add the spec.externalCACertificates.secretName field with the name of this secret to the EventStreams custom resource that defines your instance.

    The following examples show the snippet of an EventStreams custom resource with spec.externalCACertificates.secretName set as my-external-certificates.

    • For Kafka listeners that have overridden certificates:

      spec:
        # ...
        externalCACertificates:
          secretName: my-external-certificates
        strimziOverrides:
          kafka:
            listeners:
              - name: external
                # ...
                configuration:
                  brokerCertChainAndKey:
                    certificate: my-listener-certificate.crt
                    key: my-listener-key.key
                    secretName: my-secret
      
    • For REST endpoints that have overridden certificates:

      # ...
      spec:
        externalCACertificates:
          secretName: my-external-certificates
        # ...
        adminApi:
          # ...
          endpoints:
            - name: routes-example
              containerPort: 9080
              type: route
              tlsVersion: TLSv1.3
              authenticationMechanisms:
                - iam-bearer
                - tls
                - scram-sha-512
              certOverrides:
                  certificate: mycert.crt
                  key: mykey.key
                  secretName: custom-endpoint-cert
              host: example-host.apps.example-domain.com
      
  3. Apply the custom resource and wait for the pods to reconcile. Then, you can download your custom certificates by using the Event Streams UI or CLI.

Unsupported settings

This release of Event Streams does not support the following configuration properties:

  • secretPrefix: This property adds a prefix to the name of all secrets created from the KafkaUser resource. It can cause problems with the normal operation of Event Streams.

    Do not configure prefixes by setting the EventStreams.spec.strimziOverrides.entityOperator.userOperator.secretPrefix property.

  • watchedNamespace: This property sets the namespace in which the deployed KafkaUser Operator watches for KafkaUser resources. It can cause problems with the normal operation of Event Streams as multiple components rely on the Entity User Operator to be watching the currently installed namespace.

    Do not configure the watched namespace by setting the EventStreams.spec.strimziOverrides.entityOperator.userOperator.watchedNamespace property.