Cifar10Dataset#
- class Cifar10Dataset(resize=False, data_path='cifar_data')#
Bases:
DatasetWrapper
A wrapper to the standard Cifar10 dataset, available at torchvision.datasets.CIFAR10. The current wrapper class supplyes the required transformations and augmentations, and also implements the required DatasetWrapper methods
- __init__(resize=False, data_path='cifar_data')#
Methods
__init__
([resize, data_path])Returns data set to be used for range approximation
get_class_labels_dict
()Returns the class_name to index mapping
Returns the number of samples in each class.
Returns the test data
Returns the training data
get_train_pipe_ffcv
(args)Returns the training data as ffcv pipeline
Returns the validation data
Always returns False - Cifar10 dataset is balanced
- get_approximation_set()#
Returns data set to be used for range approximation
- get_samples_per_class(ds)#
Returns the number of samples in each class. The Cifar10 dataset has the same number of images in each class.
- Params:
dataset (VisionDataset): The dataset
- Returns:
the number of samples in each class.
- Return type:
list<int>
- get_test_data()#
Returns the test data
- get_train_data()#
Returns the training data
- get_train_pipe_ffcv(args)#
Returns the training data as ffcv pipeline
- Params:
args (Arguments): user arguments
- Returns:
a dictionary of shape {‘image’: <image_pipeline>, ‘label’: <label_pipeline>} representing the corresponding ffcv pipelines, as explained: https://docs.ffcv.io/making_dataloaders.html#pipelines
- Return type:
Dictionary
- get_val_data()#
Returns the validation data
- is_imbalanced()#
Always returns False - Cifar10 dataset is balanced