MLToolbox#

MLToolbox offers tools to make NN models FHE-friendly while minimizing performance degradation. The MLToolbox tutorial delve into the process of making models FHE-friendly and shows how MLToolbox simplifies this task.

Resources#

Classes#

arguments.Arguments(model, dataset_name, ...)

This class defines the user arguments object, and sets the default values for some parameters

poly_activation_converter.PolyActivationConverter(...)

This class helps in the FHE conversion of the model; namely the activation replacement.

poly_activation_converter.Trainer(args[, ...])

This class represents a training object, that has all the needed components for a training, like dataLoaders, optimizer, model etc.