genai.text.chat.chat_generation_service module#
- pydantic model genai.text.chat.chat_generation_service.BaseServices[source]#
Bases:
BaseServiceServices
- Config:
extra: str = forbid
validate_assignment: bool = True
validate_default: bool = True
- field RequestService: type[RequestService] = <class 'genai.request.request_service.RequestService'>#
- class genai.text.chat.chat_generation_service.ChatService[source]#
Bases:
BaseService
[BaseServiceConfig
,BaseServices
]- Services#
alias of
BaseServices
- __init__(*, api_client, config=None, services=None)[source]#
- Parameters:
api_client (ApiClient) –
config (BaseServiceConfig | dict | None) –
services (BaseServices | None) –
- create(*, conversation_id=None, model_id=None, messages=None, moderations=None, parameters=None, parent_id=None, prompt_id=None, prompt_template_id=None, trim_method=None, use_conversation_parameters=None)[source]#
Example:
from genai import Client, Credentials from genai.text.chat import HumanMessage, TextGenerationParameters client = Client(credentials=Credentials.from_env()) # Create a new conversation response = client.text.chat.create( model_id="meta-llama/llama-3-70b-instruct", messages=[HumanMessage(content="Describe the game Chess?")], parameters=TextGenerationParameters(max_token_limit=100) ) conversation_id = response.conversation_id print(f"Response: {response.results[0].generated_text}") # Continue in the conversation response = client.text.chat.create( conversation_id=conversation_id, use_conversation_parameters=True, messages=[HumanMessage(content="Who is the best player of that game?")] ) print(f"Response: {response.results[0].generated_text}")
- Raises:
ApiResponseException – In case of a known API error.
ApiNetworkException – In case of unhandled network error.
ValidationError – In case of provided parameters are invalid.
- Parameters:
conversation_id (str | None) –
model_id (str | None) –
messages (Sequence[BaseMessage] | None) –
moderations (dict | ModerationParameters | None) –
parameters (dict | TextGenerationParameters | None) –
parent_id (str | None) –
prompt_id (str | None) –
prompt_template_id (str | None) –
trim_method (str | TrimMethod | None) –
use_conversation_parameters (bool | None) –
- Return type:
TextChatCreateResponse
- create_stream(*, model_id=None, conversation_id=None, messages=None, moderations=None, parameters=None, parent_id=None, prompt_id=None, prompt_template_id=None, trim_method=None, use_conversation_parameters=None)[source]#
Example:
from genai import Client, Credentials from genai.text.chat import HumanMessage, TextGenerationParameters client = Client(credentials=Credentials.from_env()) # Create a new conversation for response in client.text.chat.create_stream( model_id="meta-llama/llama-3-70b-instruct", messages=[HumanMessage(content="Describe the game Chess?")], parameters=TextGenerationParameters(max_token_limit=100) ): print(f"Chunk retrieved: {response.results[0].generated_text}")
- Raises:
ApiResponseException – In case of a known API error.
ApiNetworkException – In case of unhandled network error.
ValidationError – In case of provided parameters are invalid.
- Parameters:
model_id (str | None) –
conversation_id (str | None) –
messages (list[BaseMessage] | None) –
moderations (dict | ModerationParameters | None) –
parameters (dict | TextGenerationParameters | None) –
parent_id (str | None) –
prompt_id (str | None) –
prompt_template_id (str | None) –
trim_method (str | TrimMethod | None) –
use_conversation_parameters (bool | None) –
- Return type:
Generator[TextChatStreamCreateResponse, None, None]