Create ChromaDB Embedding Function#
from typing import Optional
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
from dotenv import load_dotenv
from genai import Client, Credentials
from genai.schema import TextEmbeddingParameters
# make sure you have a .env file under genai root with
# GENAI_KEY=<your-genai-key>
# GENAI_API=<genai-api-endpoint>
load_dotenv()
class ChromaEmbeddingFunction(EmbeddingFunction):
def __init__(self, *, model_id: str, client: Client, parameters: Optional[TextEmbeddingParameters] = None):
self._model_id = model_id
self._parameters = parameters
self._client = client
def __call__(self, inputs: Documents) -> Embeddings:
embeddings: Embeddings = []
for response in self._client.text.embedding.create(
model_id=self._model_id, inputs=inputs, parameters=self._parameters
):
embeddings.extend(response.results)
return embeddings
credentials = Credentials.from_env()
client = Client(credentials=credentials)
embedding_fn = ChromaEmbeddingFunction(model_id="sentence-transformers/all-minilm-l6-v2", client=client)
print(embedding_fn(["Hello world!"]))