inFairness.distances.distance module#
- class inFairness.distances.distance.Distance[source]#
Bases:
ModuleAbstract base class for model distances
- fit(**kwargs)[source]#
Fits the metric parameters for learnable metrics Default functionality is to do nothing. Subclass should overwrite this method to implement custom fit logic
- abstract forward(x, y)[source]#
Subclasses must override this method to compute particular distances
- Returns:
distance between two inputs
- Return type:
Tensor
- load_state_dict(state_dict, strict=True)[source]#
Copies parameters and buffers from
state_dictinto this module and its descendants. IfstrictisTrue, then the keys ofstate_dictmust exactly match the keys returned by this module’sstate_dict()function.- Parameters:
state_dict (dict) – a dict containing parameters and persistent buffers.
strict (bool, optional) – whether to strictly enforce that the keys in
state_dictmatch the keys returned by this module’sstate_dict()function. Default:True
- Returns:
missing_keys is a list of str containing the missing keys
unexpected_keys is a list of str containing the unexpected keys
- Return type:
NamedTuplewithmissing_keysandunexpected_keysfields
Note
If a parameter or buffer is registered as
Noneand its corresponding key exists instate_dict,load_state_dict()will raise aRuntimeError.
- training: bool#