Skip to content

Heads

terratorch.models.heads.regression_head #

RegressionHead #

Bases: Module

Regression head

__init__(in_channels, final_act=None, learned_upscale_layers=0, channel_list=None, batch_norm=True, dropout=0) #

Constructor

Parameters:

Name Type Description Default
in_channels int

Number of input channels

required
final_act Module | None

Final activation to be applied. Defaults to None.

None
learned_upscale_layers int

Number of Pixelshuffle layers to create. Each upscales 2x. Defaults to 0.

0
channel_list list[int] | None

List with number of channels for each Conv layer to be created. Defaults to None.

None
batch_norm bool

Whether to apply batch norm. Defaults to True.

True
dropout float

Dropout value to apply. Defaults to 0.

0

terratorch.models.heads.segmentation_head #

SegmentationHead #

Bases: Module

Segmentation head

__init__(in_channels, num_classes, channel_list=None, dropout=0) #

Constructor

Parameters:

Name Type Description Default
in_channels int

Number of input channels

required
num_classes int

Number of output classes

required
channel_list list[int] | None

List with number of channels for each Conv layer to be created. Defaults to None.

None
dropout float

Dropout value to apply. Defaults to 0.

0

terratorch.models.heads.classification_head #

ClassificationHead #

Bases: Module

Classification head

__init__(in_dim, num_classes, dim_list=None, dropout=0, linear_after_pool=False) #

Constructor

Parameters:

Name Type Description Default
in_dim int

Input dimensionality

required
num_classes int

Number of output classes

required
dim_list list[int] | None

List with number of dimensions for each Linear layer to be created. Defaults to None.

None
dropout float

Dropout value to apply. Defaults to 0.

0
linear_after_pool bool

Apply pooling first, then apply the linear layer. Defaults to False

False

Last update: March 24, 2025