Heads
terratorch.models.heads.regression_head
#
RegressionHead
#
Bases: Module
Regression head
__init__(in_channels, final_act=None, learned_upscale_layers=0, channel_list=None, batch_norm=True, dropout=0)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels
|
int
|
Number of input channels |
required |
final_act
|
Module | None
|
Final activation to be applied. Defaults to None. |
None
|
learned_upscale_layers
|
int
|
Number of Pixelshuffle layers to create. Each upscales 2x. Defaults to 0. |
0
|
channel_list
|
list[int] | None
|
List with number of channels for each Conv layer to be created. Defaults to None. |
None
|
batch_norm
|
bool
|
Whether to apply batch norm. Defaults to True. |
True
|
dropout
|
float
|
Dropout value to apply. Defaults to 0. |
0
|
terratorch.models.heads.segmentation_head
#
SegmentationHead
#
Bases: Module
Segmentation head
__init__(in_channels, num_classes, channel_list=None, dropout=0)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_channels
|
int
|
Number of input channels |
required |
num_classes
|
int
|
Number of output classes |
required |
channel_list
|
list[int] | None
|
List with number of channels for each Conv layer to be created. Defaults to None. |
None
|
dropout
|
float
|
Dropout value to apply. Defaults to 0. |
0
|
terratorch.models.heads.classification_head
#
ClassificationHead
#
Bases: Module
Classification head
__init__(in_dim, num_classes, dim_list=None, dropout=0, linear_after_pool=False)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
in_dim
|
int
|
Input dimensionality |
required |
num_classes
|
int
|
Number of output classes |
required |
dim_list
|
list[int] | None
|
List with number of dimensions for each Linear layer to be created. Defaults to None. |
None
|
dropout
|
float
|
Dropout value to apply. Defaults to 0. |
0
|
linear_after_pool
|
bool
|
Apply pooling first, then apply the linear layer. Defaults to False |
False
|