Quick start
We suggest using Python>=3.10. To get started, make sure to have PyTorch >= 2.0.0 and GDAL installed.
Installing GDAL can be quite a complex process. If you don't have GDAL set up on your system, we reccomend using a conda environment and installing it with conda install -c conda-forge gdal
.
For a stable point-release, use pip install terratorch
.
If you prefer to get the most recent version of the main branch, install the library with pip install git+https://github.com/IBM/terratorch.git
.
To install as a developer (e.g. to extend the library) clone this repo, and run pip install -e .
.
You can interact with the library at several levels of abstraction. Each deeper level of abstraction trades off some amount of flexibility for ease of use and configuration.
Creating Backbones
In the simplest case, we might only want access a backbone and code all the rest ourselves. In this case, we can simply use the library as a backbone factory:
from terratorch import BACKBONE_REGISTRY
# find available prithvi models
print([model_name for model_name in BACKBONE_REGISTRY if "prithvi" in model_name])
>>> ['timm_prithvi_swin_B', 'timm_prithvi_swin_L', 'timm_prithvi_vit_100', 'timm_prithvi_vit_300', 'timm_prithvi_vit_tiny']
# show all models with list(BACKBONE_REGISTRY)
# check a model is in the registry
"timm_prithvi_swin_B" in BACKBONE_REGISTRY
>>> True
# without the prefix, all internal registries will be searched until the first match is found
"prithvi_swin_B" in BACKBONE_REGISTRY
>>> True
# instantiate your desired model
# the backbone registry prefix (in this case 'timm') is optional
# in this case, the underlying registry is timm, so we can pass timm arguments to it
model = BACKBONE_REGISTRY.build("prithvi_vit_100", num_frames=1, pretrained=True)
# instantiate your model with more options, for instance, passing weights of your own through timm
model = BACKBONE_REGISTRY.build(
"prithvi_vit_100", num_frames=1, pretrained=True, pretrained_cfg_overlay={"file": "<path to weights>"}
)
# Rest of your PyTorch / PyTorchLightning code
Internally, terratorch maintains several registries for components such as backbones or decoders. The top-level BACKBONE_REGISTRY
collects all of them.
The name passed to build
is used to find the appropriate model constructor, which will be the first model from the first registry found with that name.
To explicitly determine the registry that will build the model, you may prepend a prefix such as timm_
to the model name. In this case, the timm
model registry will be exclusively searched for the model.
Directly creating a full model
We also provide a model factory for a task specific model built on one a backbones:
import terratorch # even though we don't use the import directly, we need it so that the models are available in the timm registry
from terratorch.models import EncoderDecoderFactory
from terratorch.datasets import HLSBands
model_factory = EncoderDecoderFactory()
# Let's build a segmentation model
# Parameters prefixed with backbone_ get passed to the backbone
# Parameters prefixed with decoder_ get passed to the decoder
# Parameters prefixed with head_ get passed to the head
model = model_factory.build_model(task="segmentation",
backbone="prithvi_vit_100",
decoder="FCNDecoder",
backbone_bands=[
HLSBands.BLUE,
HLSBands.GREEN,
HLSBands.RED,
HLSBands.NIR_NARROW,
HLSBands.SWIR_1,
HLSBands.SWIR_2,
],
necks=[{"name": "SelectIndices", "indices": -1},
{"name": "ReshapeTokensToImage"}],
num_classes=4,
backbone_pretrained=True,
backbone_num_frames=1,
decoder_channels=128,
head_dropout=0.2
)
# Rest of your PyTorch / PyTorchLightning code
Training with Lightning Tasks
At the highest level of abstraction, you can directly obtain a LightningModule ready to be trained.
model_args = dict(
backbone="prithvi_vit_100",
decoder="FCNDecoder",
backbone_bands=[
HLSBands.BLUE,
HLSBands.GREEN,
HLSBands.RED,
HLSBands.NIR_NARROW,
HLSBands.SWIR_1,
HLSBands.SWIR_2,
],
necks=[{"name": "SelectIndices", "indices": -1},
{"name": "ReshapeTokensToImage"}],
num_classes=4,
backbone_pretrained=True,
backbone_num_frames=1,
decoder_channels=128,
head_dropout=0.2
)
task = PixelwiseRegressionTask(
model_args,
"EncoderDecoderFactory",
loss="rmse",
lr=lr,
ignore_index=-1,
optimizer="AdamW",
optimizer_hparams={"weight_decay": 0.05},
)
# Pass this LightningModule to a Lightning Trainer, together with some LightningDataModule
# lightning.pytorch==2.1.1
seed_everything: 0
trainer:
accelerator: auto
strategy: auto
devices: auto
num_nodes: 1
precision: bf16
logger:
class_path: TensorBoardLogger
init_args:
save_dir: <path_to_experiment_dir>
name: <experiment_name>
callbacks:
- class_path: RichProgressBar
- class_path: LearningRateMonitor
init_args:
logging_interval: epoch
max_epochs: 200
check_val_every_n_epoch: 1
log_every_n_steps: 50
enable_checkpointing: true
default_root_dir: <path_to_experiment_dir>
data:
class_path: terratorch.datamodules.sen1floods11.Sen1Floods11NonGeoDataModule
init_args:
batch_size: 16
num_workers: 8
dict_kwargs:
data_root: <path_to_data_root>
bands:
- 1
- 2
- 3
- 8
- 11
- 12
model:
class_path: terratorch.tasks.SemanticSegmentationTask
init_args:
model_args:
decoder: UperNetDecoder
backbone_pretrained: True
backbone: prithvi_vit_100
backbone_pretrain_img_size: 512
decoder_scale_modules: True
decoder_channels: 256
backbone_in_channels: 6
backbone_bands:
- BLUE
- GREEN
- RED
- NIR_NARROW
- SWIR_1
- SWIR_2
num_frames: 1
num_classes: 2
head_dropout: 0.1
head_channel_list:
- 256
post_backbone_ops:
- name: SelectIndices
indices:
- 5
- 11
- 17
- 23
- name: ReshapeTokensToImage
loss: ce
ignore_index: -1
class_weights:
- 0.3
- 0.7
freeze_backbone: false
freeze_decoder: false
model_factory: EncoderDecoderFactory
optimizer:
class_path: torch.optim.AdamW
init_args:
lr: 6.e-5
weight_decay: 0.05
lr_scheduler:
class_path: ReduceLROnPlateau
init_args:
monitor: val/loss
To run this training task, simply execute terratorch fit --config <path_to_config_file>
To test your model on the test set, execute terratorch test --config <path_to_config_file> --ckpt_path <path_to_checkpoint_file>
For inference, execute terratorch predict -c <path_to_config_file> --ckpt_path<path_to_checkpoint> --predict_output_dir <path_to_output_dir> --data.init_args.predict_data_root <path_to_input_dir> --data.init_args.predict_dataset_bands <all bands in the predicted dataset, e.g. [BLUE,GREEN,RED,NIR_NARROW,SWIR_1,SWIR_2,0]>