Generic Datasets#
terratorch.datasets.generic_pixel_wise_dataset.GenericNonGeoSegmentationDataset
#
Bases: GenericPixelWiseDataset
GenericNonGeoSegmentationDataset
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
|
__init__(data_root, num_classes, label_data_root=None, image_grep='*', label_grep='*', split=None, ignore_split_file_extensions=True, allow_substring_split_file=True, rgb_indices=None, dataset_bands=None, output_bands=None, class_names=None, constant_scale=1, transform=None, no_data_replace=None, no_label_replace=None, expand_temporal_dimension=False, reduce_zero_label=False)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
Path
|
Path to data root directory |
required |
num_classes
|
int
|
Number of classes in the dataset |
required |
label_data_root
|
Path
|
Path to data root directory with labels. If not specified, will use the same as for images. |
None
|
image_grep
|
str
|
Regular expression appended to data_root to find input images. Defaults to "*". |
'*'
|
label_grep
|
str
|
Regular expression appended to data_root to find ground truth masks. Defaults to "*". |
'*'
|
split
|
Path
|
Path to file containing files to be used for this split. The file should be a new-line separated prefixes contained in the desired files. Files will be seached using glob with the form Path(data_root).glob(prefix + [image or label grep]) |
None
|
ignore_split_file_extensions
|
bool
|
Whether to disregard extensions when using the split file to determine which files to include in the dataset. E.g. necessary for Eurosat, since the split files specify ".jpg" but files are actually ".jpg". Defaults to True |
True
|
allow_substring_split_file
|
bool
|
Whether the split files contain substrings that must be present in file names to be included (as in mmsegmentation), or exact matches (e.g. eurosat). Defaults to True. |
True
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
dataset_bands
|
list[HLSBands | int] | None
|
Bands present in the dataset. |
None
|
output_bands
|
list[HLSBands | int] | None
|
Bands that should be output by the dataset. |
None
|
class_names
|
list[str]
|
Class names. Defaults to None. |
None
|
constant_scale
|
float
|
Factor to multiply image values by. Defaults to 1. |
1
|
transform
|
Compose | None
|
Albumentations transform to be applied. Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float | None
|
Replace nan values in input images with this value. If none, does no replacement. Defaults to None. |
None
|
no_label_replace
|
int | None
|
Replace nan values in label with this value. If none, does no replacement. Defaults to None. |
None
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Defaults to False. |
False
|
reduce_zero_label
|
bool
|
Subtract 1 from all labels. Useful when labels start from 1 instead of the expected 0. Defaults to False. |
False
|
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
|
plot(sample, suptitle=None, show_axes=False)
#
Plot a sample from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
dict[str, Tensor]
|
a sample returned by :meth: |
required |
suptitle
|
str | None
|
optional string to use as a suptitle |
None
|
show_axes
|
bool | None
|
whether to show axes or not |
False
|
Returns:
Type | Description |
---|---|
Figure
|
a matplotlib Figure with the rendered sample |
.. versionadded:: 0.2
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
terratorch.datasets.generic_pixel_wise_dataset.GenericNonGeoPixelwiseRegressionDataset
#
Bases: GenericPixelWiseDataset
GenericNonGeoPixelwiseRegressionDataset
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
|
__init__(data_root, label_data_root=None, image_grep='*', label_grep='*', split=None, ignore_split_file_extensions=True, allow_substring_split_file=True, rgb_indices=None, dataset_bands=None, output_bands=None, constant_scale=1, transform=None, no_data_replace=None, no_label_replace=None, expand_temporal_dimension=False, reduce_zero_label=False)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
Path
|
Path to data root directory |
required |
label_data_root
|
Path
|
Path to data root directory with labels. If not specified, will use the same as for images. |
None
|
image_grep
|
str
|
Regular expression appended to data_root to find input images. Defaults to "*". |
'*'
|
label_grep
|
str
|
Regular expression appended to data_root to find ground truth masks. Defaults to "*". |
'*'
|
split
|
Path
|
Path to file containing files to be used for this split. The file should be a new-line separated prefixes contained in the desired files. Files will be seached using glob with the form Path(data_root).glob(prefix + [image or label grep]) |
None
|
ignore_split_file_extensions
|
bool
|
Whether to disregard extensions when using the split file to determine which files to include in the dataset. E.g. necessary for Eurosat, since the split files specify ".jpg" but files are actually ".jpg". Defaults to True. |
True
|
allow_substring_split_file
|
bool
|
Whether the split files contain substrings that must be present in file names to be included (as in mmsegmentation), or exact matches (e.g. eurosat). Defaults to True. |
True
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
dataset_bands
|
list[HLSBands | int] | None
|
Bands present in the dataset. |
None
|
output_bands
|
list[HLSBands | int] | None
|
Bands that should be output by the dataset. |
None
|
constant_scale
|
float
|
Factor to multiply image values by. Defaults to 1. |
1
|
transform
|
Compose | None
|
Albumentations transform to be applied. Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float | None
|
Replace nan values in input images with this value. If none, does no replacement. Defaults to None. |
None
|
no_label_replace
|
int | None
|
Replace nan values in label with this value. If none, does no replacement. Defaults to None. |
None
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Defaults to False. |
False
|
reduce_zero_label
|
bool
|
Subtract 1 from all labels. Useful when labels start from 1 instead of the expected 0. Defaults to False. |
False
|
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
plot(sample, suptitle=None, show_axes=False)
#
Plot a sample from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
dict[str, Tensor]
|
a sample returned by :meth: |
required |
suptitle
|
str | None
|
optional string to use as a suptitle |
None
|
show_axes
|
bool | None
|
whether to show axes or not |
False
|
Returns:
Type | Description |
---|---|
Figure
|
a matplotlib Figure with the rendered sample |
.. versionadded:: 0.2
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
terratorch.datasets.generic_pixel_wise_dataset.GenericPixelWiseDataset
#
Bases: NonGeoDataset
, ABC
This is a generic dataset class to be used for instantiating datasets from arguments. Ideally, one would create a dataset class specific to a dataset.
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
|
__init__(data_root, label_data_root=None, image_grep='*', label_grep='*', split=None, ignore_split_file_extensions=True, allow_substring_split_file=True, rgb_indices=None, dataset_bands=None, output_bands=None, constant_scale=1, transform=None, no_data_replace=None, no_label_replace=None, expand_temporal_dimension=False, reduce_zero_label=False)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
Path
|
Path to data root directory |
required |
label_data_root
|
Path
|
Path to data root directory with labels. If not specified, will use the same as for images. |
None
|
image_grep
|
str
|
Regular expression appended to data_root to find input images. Defaults to "*". |
'*'
|
label_grep
|
str
|
Regular expression appended to data_root to find ground truth masks. Defaults to "*". |
'*'
|
split
|
Path
|
Path to file containing files to be used for this split. The file should be a new-line separated prefixes contained in the desired files. Files will be seached using glob with the form Path(data_root).glob(prefix + [image or label grep]) |
None
|
ignore_split_file_extensions
|
bool
|
Whether to disregard extensions when using the split file to determine which files to include in the dataset. E.g. necessary for Eurosat, since the split files specify ".jpg" but files are actually ".jpg". Defaults to True. |
True
|
allow_substring_split_file
|
bool
|
Whether the split files contain substrings that must be present in file names to be included (as in mmsegmentation), or exact matches (e.g. eurosat). Defaults to True. |
True
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
dataset_bands
|
list[HLSBands | int | tuple[int, int] | str] | None
|
Bands present in the dataset. This parameter names input channels (bands) using HLSBands, ints, int ranges, or strings, so that they can then be refered to by output_bands. Defaults to None. |
None
|
output_bands
|
list[HLSBands | int | tuple[int, int] | str] | None
|
Bands that should be output by the dataset as named by dataset_bands. |
None
|
constant_scale
|
float
|
Factor to multiply image values by. Defaults to 1. |
1
|
transform
|
Compose | None
|
Albumentations transform to be applied. Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float | None
|
Replace nan values in input images with this value. If none, does no replacement. Defaults to None. |
None
|
no_label_replace
|
int | None
|
Replace nan values in label with this value. If none, does no replacement. Defaults to -1. |
None
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Defaults to False. |
False
|
reduce_zero_label
|
bool
|
Subtract 1 from all labels. Useful when labels start from 1 instead of the expected 0. Defaults to False. |
False
|
Source code in terratorch/datasets/generic_pixel_wise_dataset.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
|
terratorch.datasets.generic_scalar_label_dataset.GenericNonGeoClassificationDataset
#
Bases: GenericScalarLabelDataset
GenericNonGeoClassificationDataset
Source code in terratorch/datasets/generic_scalar_label_dataset.py
__init__(data_root, num_classes, split=None, require_label=True, ignore_split_file_extensions=True, allow_substring_split_file=True, rgb_indices=None, dataset_bands=None, output_bands=None, class_names=None, constant_scale=1, transform=None, no_data_replace=0, expand_temporal_dimension=False)
#
A generic Non-Geo dataset for classification.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
Path
|
Path to data root directory |
required |
num_classes
|
int
|
Number of classes in the dataset |
required |
split
|
Path
|
Path to file containing files to be used for this split. The file should be a new-line separated prefixes contained in the desired files. Files will be seached using glob with the form Path(data_root).glob(prefix + [image or label grep]) |
None
|
ignore_split_file_extensions
|
bool
|
Whether to disregard extensions when using the split file to determine which files to include in the dataset. E.g. necessary for Eurosat, since the split files specify ".jpg" but files are actually ".jpg". Defaults to True. |
True
|
allow_substring_split_file
|
bool
|
Whether the split files contain substrings that must be present in file names to be included (as in mmsegmentation), or exact matches (e.g. eurosat). Defaults to True. |
True
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
dataset_bands
|
list[HLSBands | int] | None
|
Bands present in the dataset. |
None
|
output_bands
|
list[HLSBands | int] | None
|
Bands that should be output by the dataset. |
None
|
class_names
|
list[str]
|
Class names. Defaults to None. |
None
|
constant_scale
|
float
|
Factor to multiply image values by. Defaults to 1. |
1
|
transform
|
Compose | None
|
Albumentations transform to be applied. Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float
|
Replace nan values in input images with this value. Defaults to 0. |
0
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Defaults to False. |
False
|
Source code in terratorch/datasets/generic_scalar_label_dataset.py
terratorch.datasets.generic_scalar_label_dataset.GenericScalarLabelDataset
#
Bases: NonGeoDataset
, ImageFolder
, ABC
This is a generic dataset class to be used for instantiating datasets from arguments. Ideally, one would create a dataset class specific to a dataset.
Source code in terratorch/datasets/generic_scalar_label_dataset.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
|
__base_getitem__(index)
#
Parameters:
Name | Type | Description | Default |
---|---|---|---|
index
|
int
|
Index |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
tuple[Any, Any]
|
(sample, target) where target is class_index of the target class. |
Source code in terratorch/datasets/generic_scalar_label_dataset.py
__init__(data_root, split=None, require_label=True, ignore_split_file_extensions=True, allow_substring_split_file=True, rgb_indices=None, dataset_bands=None, output_bands=None, constant_scale=1, transform=None, no_data_replace=0, expand_temporal_dimension=False)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
Path
|
Path to data root directory |
required |
split
|
Path
|
Path to file containing files to be used for this split. The file should be a new-line separated prefixes contained in the desired files. Files will be seached using glob with the form Path(data_root).glob(prefix + [image or label grep]) |
None
|
ignore_split_file_extensions
|
bool
|
Whether to disregard extensions when using the split file to determine which files to include in the dataset. E.g. necessary for Eurosat, since the split files specify ".jpg" but files are actually ".jpg". Defaults to True. |
True
|
allow_substring_split_file
|
bool
|
Whether the split files contain substrings that must be present in file names to be included (as in mmsegmentation), or exact matches (e.g. eurosat). Defaults to True. |
True
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
dataset_bands
|
list[HLSBands | int | tuple[int, int] | str] | None
|
Bands present in the dataset. This parameter gives identifiers to input channels (bands) so that they can then be refered to by output_bands. Can use the HLSBands enum, ints, int ranges, or strings. Defaults to None. |
None
|
output_bands
|
list[HLSBands | int | tuple[int, int] | str] | None
|
Bands that should be output by the dataset as named by dataset_bands. |
None
|
constant_scale
|
float
|
Factor to multiply image values by. Defaults to 1. |
1
|
transform
|
Compose | None
|
Albumentations transform to be applied. Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float
|
Replace nan values in input images with this value. Defaults to 0. |
0
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Defaults to False. |
False
|
Source code in terratorch/datasets/generic_scalar_label_dataset.py
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
|
terratorch.datasets.generic_multimodal_dataset.GenericMultimodalSegmentationDataset
#
Bases: GenericMultimodalDataset
GenericNonGeoSegmentationDataset
Source code in terratorch/datasets/generic_multimodal_dataset.py
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
|
__init__(data_root, num_classes, label_data_root=None, image_grep='*', label_grep='*', split=None, image_modalities=None, rgb_modality=None, rgb_indices=None, allow_missing_modalities=False, allow_substring_file_names=False, dataset_bands=None, output_bands=None, class_names=None, constant_scale=1.0, transform=None, no_data_replace=None, no_label_replace=-1, expand_temporal_dimension=False, reduce_zero_label=False, channel_position=-3, concat_bands=False, *args, **kwargs)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
dict[Path]
|
Dictionary of paths to data root directory or csv/parquet files with image-level data, with modalities as keys. |
required |
num_classes
|
int
|
Number of classes. |
required |
label_data_root
|
Path
|
Path to data root directory with mask files. Set to None for prediction mode. |
None
|
image_grep
|
dict[str]
|
Dictionary with regular expression appended to data_root to find input images, with modalities as keys. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
label_grep
|
str
|
Regular expression appended to label_data_root to find mask files. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
split
|
Path
|
Path to file containing samples prefixes to be used for this split. The file can be a csv/parquet file with the prefixes in the index or a txt file with new-line separated sample prefixes. File names must be exact matches if allow_substring_file_names is False. Otherwise, files are searched using glob with the form Path(data_root).glob(prefix + [image or label grep]). If not specified, search samples based on files in data_root. Defaults to None. |
None
|
image_modalities(list[str],
|
optional
|
List of pixel-level raster modalities. Defaults to data_root.keys(). The difference between all modalities and image_modalities are non-image modalities which are treated differently during the transforms and are not modified but only converted into a tensor if possible. |
required |
rgb_modality
|
str
|
Modality used for RGB plots. Defaults to first modality in data_root.keys(). |
None
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
allow_missing_modalities
|
bool
|
Allow missing modalities during data loading. Defaults to False. |
False
|
allow_substring_file_names
|
bool
|
Allow substrings during sample identification by adding image or label grep to the sample prefixes. If False, treats sample prefixes as full file names. If True and no split file is provided, considers the file stem as prefix, otherwise the full file name. Defaults to True. |
False
|
dataset_bands
|
dict[list]
|
Bands present in the dataset, provided in a dictionary with modalities as keys. This parameter names input channels (bands) using HLSBands, ints, int ranges, or strings, so that they can then be referred to by output_bands. Needs to be superset of output_bands. Can be a subset of all modalities. Defaults to None. |
None
|
output_bands
|
dict[list]
|
Bands that should be output by the dataset as named by dataset_bands, provided as a dictionary with modality keys. Can be subset of all modalities. Defaults to None. |
None
|
class_names
|
list[str]
|
Names of the classes. Defaults to None. |
None
|
constant_scale
|
dict[float]
|
Factor to multiply data values by, provided as a dictionary with modalities as keys. Can be subset of all modalities. Defaults to None. |
1.0
|
transform
|
Compose | dict | None
|
Albumentations transform to be applied to all image modalities (transformation are shared between image modalities, e.g., similar crop or rotation). Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. The transform is not applied to non-image data, which is only converted to tensors if possible. If dict, can include multiple transforms per modality which are applied separately (no shared parameters between modalities). Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float | None
|
Replace nan values in input data with this value. If None, does no replacement. Defaults to None. |
None
|
no_label_replace
|
float | None
|
Replace nan values in label with this value. If none, does no replacement. Defaults to -1. |
-1
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Only works with image modalities. Is only applied to modalities with defined dataset_bands. Defaults to False. |
False
|
reduce_zero_label
|
bool
|
Subtract 1 from all labels. Useful when labels start from 1 instead of the expected 0. Defaults to False. |
False
|
channel_position
|
int
|
Position of the channel dimension in the image modalities. Defaults to -3. |
-3
|
concat_bands
|
bool
|
Concatenate all image modalities along the band dimension into a single "image", so that it can be processed by single-modal models. Concatenate in the order of provided modalities. Works with image modalities only. Does not work with allow_missing_modalities. Defaults to False. |
False
|
Source code in terratorch/datasets/generic_multimodal_dataset.py
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 |
|
plot(sample, suptitle=None, show_axes=False)
#
Plot a sample from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
dict[str, Tensor]
|
a sample returned by :meth: |
required |
suptitle
|
str | None
|
optional string to use as a suptitle |
None
|
show_axes
|
bool | None
|
whether to show axes or not |
False
|
Returns:
Type | Description |
---|---|
Figure
|
a matplotlib Figure with the rendered sample |
.. versionadded:: 0.2
Source code in terratorch/datasets/generic_multimodal_dataset.py
terratorch.datasets.generic_multimodal_dataset.GenericMultimodalPixelwiseRegressionDataset
#
Bases: GenericMultimodalDataset
GenericNonGeoPixelwiseRegressionDataset
Source code in terratorch/datasets/generic_multimodal_dataset.py
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
|
__init__(data_root, label_data_root=None, image_grep='*', label_grep='*', split=None, image_modalities=None, rgb_modality=None, rgb_indices=None, allow_missing_modalities=False, allow_substring_file_names=False, dataset_bands=None, output_bands=None, constant_scale=1.0, transform=None, no_data_replace=None, no_label_replace=None, expand_temporal_dimension=False, reduce_zero_label=False, channel_position=-3, concat_bands=False, *args, **kwargs)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
dict[Path]
|
Dictionary of paths to data root directory or csv/parquet files with image-level data, with modalities as keys. |
required |
label_data_root
|
Path
|
Path to data root directory with ground truth files. Set to None for predictions. |
None
|
image_grep
|
dict[str]
|
Dictionary with regular expression appended to data_root to find input images, with modalities as keys. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
label_grep
|
str
|
Regular expression appended to label_data_root to find ground truth files. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
split
|
Path
|
Path to file containing samples prefixes to be used for this split. The file can be a csv/parquet file with the prefixes in the index or a txt file with new-line separated sample prefixes. File names must be exact matches if allow_substring_file_names is False. Otherwise, files are searched using glob with the form Path(data_root).glob(prefix + [image or label grep]). If not specified, search samples based on files in data_root. Defaults to None. |
None
|
image_modalities(list[str],
|
optional
|
List of pixel-level raster modalities. Defaults to data_root.keys(). The difference between all modalities and image_modalities are non-image modalities which are treated differently during the transforms and are not modified but only converted into a tensor if possible. |
required |
rgb_modality
|
str
|
Modality used for RGB plots. Defaults to first modality in data_root.keys(). |
None
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
allow_missing_modalities
|
bool
|
Allow missing modalities during data loading. Defaults to False. |
False
|
allow_substring_file_names
|
bool
|
Allow substrings during sample identification by adding image or label grep to the sample prefixes. If False, treats sample prefixes as full file names. If True and no split file is provided, considers the file stem as prefix, otherwise the full file name. Defaults to True. |
False
|
dataset_bands
|
dict[list]
|
Bands present in the dataset, provided in a dictionary with modalities as keys. This parameter names input channels (bands) using HLSBands, ints, int ranges, or strings, so that they can then be referred to by output_bands. Needs to be superset of output_bands. Can be a subset of all modalities. Defaults to None. |
None
|
output_bands
|
dict[list]
|
Bands that should be output by the dataset as named by dataset_bands, provided as a dictionary with modality keys. Can be subset of all modalities. Defaults to None. |
None
|
constant_scale
|
dict[float]
|
Factor to multiply data values by, provided as a dictionary with modalities as keys. Can be subset of all modalities. Defaults to None. |
1.0
|
transform
|
Compose | dict | None
|
Albumentations transform to be applied to all image modalities. Should end with ToTensorV2() and not include normalization. The transform is not applied to non-image data, which is only converted to tensors if possible. If dict, can include separate transforms per modality (no shared parameters between modalities). Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float | None
|
Replace nan values in input data with this value. If None, does no replacement. Defaults to None. |
None
|
no_label_replace
|
float | None
|
Replace nan values in label with this value. If none, does no replacement. Defaults to None. |
None
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Only works with image modalities. Is only applied to modalities with defined dataset_bands. Defaults to False. |
False
|
reduce_zero_label
|
bool
|
Subtract 1 from all labels. Useful when labels start from 1 instead of the expected 0. Defaults to False. |
False
|
channel_position
|
int
|
Position of the channel dimension in the image modalities. Defaults to -3. |
-3
|
concat_bands
|
bool
|
Concatenate all image modalities along the band dimension into a single "image", so that it can be processed by single-modal models. Concatenate in the order of provided modalities. Works with image modalities only. Does not work with allow_missing_modalities. Defaults to False. |
False
|
Source code in terratorch/datasets/generic_multimodal_dataset.py
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 |
|
plot(sample, suptitle=None, show_axes=False)
#
Plot a sample from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
dict[str, Tensor]
|
a sample returned by :meth: |
required |
suptitle
|
str | None
|
optional string to use as a suptitle |
None
|
show_axes
|
bool | None
|
whether to show axes or not |
False
|
Returns:
Type | Description |
---|---|
Figure
|
a matplotlib Figure with the rendered sample |
.. versionadded:: 0.2
Source code in terratorch/datasets/generic_multimodal_dataset.py
terratorch.datasets.generic_multimodal_dataset.GenericMultimodalScalarDataset
#
Bases: GenericMultimodalDataset
GenericMultimodalClassificationDataset
Source code in terratorch/datasets/generic_multimodal_dataset.py
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 |
|
__init__(data_root, num_classes, label_data_root=None, image_grep='*', label_grep='*', split=None, image_modalities=None, rgb_modality=None, rgb_indices=None, allow_missing_modalities=False, allow_substring_file_names=False, dataset_bands=None, output_bands=None, class_names=None, constant_scale=1.0, transform=None, no_data_replace=None, no_label_replace=None, expand_temporal_dimension=False, reduce_zero_label=False, channel_position=-3, concat_bands=False, *args, **kwargs)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
dict[Path]
|
Dictionary of paths to data root directory or csv/parquet files with image-level data, with modalities as keys. |
required |
num_classes
|
int
|
Number of classes. |
required |
label_data_root
|
Path
|
Path to data root directory with labels or csv/parquet files with labels. Set to None for prediction mode. |
None
|
image_grep
|
dict[str]
|
Dictionary with regular expression appended to data_root to find input images, with modalities as keys. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
label_grep
|
str
|
Regular expression appended to label_data_root to find labels files. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
split
|
Path
|
Path to file containing samples prefixes to be used for this split. The file can be a csv/parquet file with the prefixes in the index or a txt file with new-line separated sample prefixes. File names must be exact matches if allow_substring_file_names is False. Otherwise, files are searched using glob with the form Path(data_root).glob(prefix + [image or label grep]). If not specified, search samples based on files in data_root. Defaults to None. |
None
|
image_modalities(list[str],
|
optional
|
List of pixel-level raster modalities. Defaults to data_root.keys(). The difference between all modalities and image_modalities are non-image modalities which are treated differently during the transforms and are not modified but only converted into a tensor if possible. |
required |
rgb_modality
|
str
|
Modality used for RGB plots. Defaults to first modality in data_root.keys(). |
None
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
allow_missing_modalities
|
bool
|
Allow missing modalities during data loading. Defaults to False. |
False
|
allow_substring_file_names
|
bool
|
Allow substrings during sample identification by adding image or label grep to the sample prefixes. If False, treats sample prefixes as full file names. If True and no split file is provided, considers the file stem as prefix, otherwise the full file name. Defaults to True. |
False
|
dataset_bands
|
dict[list]
|
Bands present in the dataset, provided in a dictionary with modalities as keys. This parameter names input channels (bands) using HLSBands, ints, int ranges, or strings, so that they can then be referred to by output_bands. Needs to be superset of output_bands. Can be a subset of all modalities. Defaults to None. |
None
|
output_bands
|
dict[list]
|
Bands that should be output by the dataset as named by dataset_bands, provided as a dictionary with modality keys. Can be subset of all modalities. Defaults to None. |
None
|
class_names
|
list[str]
|
Names of the classes. Defaults to None. |
None
|
constant_scale
|
dict[float]
|
Factor to multiply data values by, provided as a dictionary with modalities as keys. Can be subset of all modalities. Defaults to None. |
1.0
|
transform
|
Compose | dict | None
|
Albumentations transform to be applied to all image modalities (transformation are shared between image modalities, e.g., similar crop or rotation). Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. The transform is not applied to non-image data, which is only converted to tensors if possible. If dict, can include multiple transforms per modality which are applied separately (no shared parameters between modalities). Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float | None
|
Replace nan values in input data with this value. If None, does no replacement. Defaults to None. |
None
|
no_label_replace
|
float | None
|
Replace nan values in label with this value. If none, does no replacement. Defaults to -1. |
None
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Only works with image modalities. Is only applied to modalities with defined dataset_bands. Defaults to False. |
False
|
reduce_zero_label
|
bool
|
Subtract 1 from all labels. Useful when labels start from 1 instead of the expected 0. Defaults to False. |
False
|
channel_position
|
int
|
Position of the channel dimension in the image modalities. Defaults to -3. |
-3
|
concat_bands
|
bool
|
Concatenate all image modalities along the band dimension into a single "image", so that it can be processed by single-modal models. Concatenate in the order of provided modalities. Works with image modalities only. Does not work with allow_missing_modalities. Defaults to False. |
False
|
Source code in terratorch/datasets/generic_multimodal_dataset.py
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 |
|
plot(sample, suptitle=None, show_axes=False)
#
Plot a sample from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
dict[str, Tensor]
|
a sample returned by :meth: |
required |
suptitle
|
str | None
|
optional string to use as a suptitle |
None
|
show_axes
|
bool | None
|
whether to show axes or not |
False
|
Returns:
Type | Description |
---|---|
Figure
|
a matplotlib Figure with the rendered sample |
.. versionadded:: 0.2
Source code in terratorch/datasets/generic_multimodal_dataset.py
terratorch.datasets.generic_multimodal_dataset.GenericMultimodalDataset
#
Bases: NonGeoDataset
, ABC
This is a generic dataset class to be used for instantiating datasets from arguments. Ideally, one would create a dataset class specific to a dataset.
Source code in terratorch/datasets/generic_multimodal_dataset.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
|
__init__(data_root, label_data_root=None, image_grep='*', label_grep='*', split=None, image_modalities=None, rgb_modality=None, rgb_indices=None, allow_missing_modalities=False, allow_substring_file_names=True, dataset_bands=None, output_bands=None, constant_scale=None, transform=None, no_data_replace=None, no_label_replace=-1, expand_temporal_dimension=False, reduce_zero_label=False, channel_position=-3, scalar_label=False, data_with_sample_dim=False, concat_bands=False, *args, **kwargs)
#
Constructor
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_root
|
dict[Path]
|
Dictionary of paths to data root directory or csv/parquet files with image-level data, with modalities as keys. |
required |
label_data_root
|
Path
|
Path to data root directory with labels or csv/parquet files with image-level labels. Needs to be specified for supervised tasks. Set to None for prediction mode. |
None
|
image_grep
|
dict[str]
|
Dictionary with regular expression appended to data_root to find input images, with modalities as keys. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
label_grep
|
str
|
Regular expression appended to label_data_root to find labels or mask files. Defaults to "*". Ignored when allow_substring_file_names is False. |
'*'
|
split
|
Path
|
Path to file containing samples prefixes to be used for this split. The file can be a csv/parquet file with the prefixes in the index or a txt file with new-line separated sample prefixes. File names must be exact matches if allow_substring_file_names is False. Otherwise, files are searched using glob with the form Path(data_root).glob(prefix + [image or label grep]). If not specified, search samples based on files in data_root. Defaults to None. |
None
|
image_modalities(list[str],
|
optional
|
List of pixel-level raster modalities. Defaults to data_root.keys(). The difference between all modalities and image_modalities are non-image modalities which are treated differently during the transforms and are not modified but only converted into a tensor if possible. |
required |
rgb_modality
|
str
|
Modality used for RGB plots. Defaults to first modality in data_root.keys(). |
None
|
rgb_indices
|
list[str]
|
Indices of RGB channels. Defaults to [0, 1, 2]. |
None
|
allow_missing_modalities
|
bool
|
Allow missing modalities during data loading. Defaults to False. |
False
|
allow_substring_file_names
|
bool
|
Allow substrings during sample identification by adding image or label grep to the sample prefixes. If False, treats sample prefixes as full file names. If True and no split file is provided, considers the file stem as prefix, otherwise the full file name. Defaults to True. |
True
|
dataset_bands
|
dict[list]
|
Bands present in the dataset, provided in a dictionary with modalities as keys. This parameter names input channels (bands) using HLSBands, ints, int ranges, or strings, so that they can then be referred to by output_bands. Needs to be superset of output_bands. Can be a subset of all modalities. Defaults to None. |
None
|
output_bands
|
dict[list]
|
Bands that should be output by the dataset as named by dataset_bands, provided as a dictionary with modality keys. Can be subset of all modalities. Defaults to None. |
None
|
constant_scale
|
dict[float]
|
Factor to multiply data values by, provided as a dictionary with modalities as keys. Can be subset of all modalities. Defaults to None. |
None
|
transform
|
Compose | dict | None
|
Albumentations transform to be applied to all image modalities (transformation are shared between image modalities, e.g., similar crop or rotation). Should end with ToTensorV2(). If used through the generic_data_module, should not include normalization. Not supported for multi-temporal data. The transform is not applied to non-image data, which is only converted to tensors if possible. If dict, can include multiple transforms per modality which are applied separately (no shared parameters between modalities). Defaults to None, which simply applies ToTensorV2(). |
None
|
no_data_replace
|
float | None
|
Replace nan values in input data with this value. If None, does no replacement. Defaults to None. |
None
|
no_label_replace
|
float | None
|
Replace nan values in label with this value. If none, does no replacement. Defaults to -1. |
-1
|
expand_temporal_dimension
|
bool
|
Go from shape (time*channels, h, w) to (channels, time, h, w). Only works with image modalities. Is only applied to modalities with defined dataset_bands. Defaults to False. |
False
|
reduce_zero_label
|
bool
|
Subtract 1 from all labels. Useful when labels start from 1 instead of the expected 0. Defaults to False. |
False
|
channel_position
|
int
|
Position of the channel dimension in the image modalities. Defaults to -3. |
-3
|
scalar_label
|
bool
|
Returns a image mask if False or otherwise the raw labels. Defaults to False. |
False
|
concat_bands
|
bool
|
Concatenate all image modalities along the band dimension into a single "image", so that it can be processed by single-modal models. Concatenate in the order of provided modalities. Works with image modalities only. Does not work with allow_missing_modalities. Defaults to False. |
False
|
Source code in terratorch/datasets/generic_multimodal_dataset.py
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
|
plot(sample, suptitle=None)
#
Plot a sample from the dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sample
|
dict[str, Tensor]
|
a sample returned by :meth: |
required |
suptitle
|
str | None
|
optional string to use as a suptitle |
None
|
Returns:
Type | Description |
---|---|
Figure
|
a matplotlib Figure with the rendered sample |
.. versionadded:: 0.2