Prompt Tuning# This version of ibm-watson-machine-learning client introduces support for Tune Experiments. Working with TuneExperiment and PromptTuner Tune Experiment run Configure PromptTuner Get configuration parameters Run prompt tuning Get run status, get run details Get data connections Summary Plot learning curves Get model identifier Tuned Model Inference Working with deployments Creating ModelInference instance Importing data Analyzing satisfaction Generate methods Tune Experiment TuneExperiment TuneExperiment TuneExperiment.prompt_tuner() TuneExperiment.runs() Tune Runs TuneRuns TuneRuns.get_run_details() TuneRuns.get_tuner() TuneRuns.list() Prompt Tuner PromptTuner PromptTuner.cancel_run() PromptTuner.get_data_connections() PromptTuner.get_model_id() PromptTuner.get_params() PromptTuner.get_run_details() PromptTuner.get_run_status() PromptTuner.plot_learning_curve() PromptTuner.run() PromptTuner.summary() Enums PromptTuningTypes PromptTuningTypes.PT PromptTuningInitMethods PromptTuningInitMethods.RANDOM PromptTuningInitMethods.TEXT TuneExperimentTasks TuneExperimentTasks.CLASSIFICATION TuneExperimentTasks.CODE_GENERATION_AND_CONVERSION TuneExperimentTasks.EXTRACTION TuneExperimentTasks.GENERATION TuneExperimentTasks.QUESTION_ANSWERING TuneExperimentTasks.RETRIEVAL_AUGMENTED_GENERATION TuneExperimentTasks.SUMMARIZATION