### Copyright 2023 IBM Corp. All Rights Reserved.## SPDX-License-Identifier: Apache-2.0### flake8: noqa: E501fromtypingimportUnion,Tuple,List,TypeVar,Iterablefrom.import_utilsfrom.constantsimportFactfromlnn.symbolic.logic.leaf_formulaimportPredicateimportreimportrandomimportitertoolsimportnumpyasnpfromtabulateimporttabulateimportmatplotlib.pyplotaspltTRUE=Fact.TRUEFALSE=Fact.FALSEdefsplit_string_into_groundings(state:str)->Tuple[str]:r""" Parameters ---------- :param state: The state is given as a string value representing the groundings; i.e "('T','T')" Examples -------- P,Q = Predicate("P","Q") x,y = Variables("x","y") PQ = Or(P(x), Q(y)) PQ.upward() PQ.state(("T","T")) returns Fact.TRUE Returns ------- Groundings, given as strings, as a tuple of strings ; i.e "('T','T')" -> ("T","T") """pattern=r'[\'"()]'grounding_strings=re.sub(pattern,"",state)partial_groundings=grounding_strings.split(",")partial_groundings=[pg.strip()forpginpartial_groundings]returntuple(partial_groundings)defget_binary_truth_table(formulae:dict)->dict:r""" Parameters ---------- :param formulae: Formulae is a dictionary with str:formula format ;i.e {"P or Q": <lnn.symbolic.logic.n_ary_neuron >} Returns ------- Truth table in a dictionary format """table=dict()groundings=set()forfinformulae.values():groundings.update(f.groundings)groundings=alphanumeric_sort(groundings)table[""]=[gforgingroundings]forname,formulainformulae.items():table[name]=[formula.state(g).nameforgingroundings]returntabledefalphanumeric_sort(iterable:Iterable):defget_int(text):returnint(text)iftext.isdigit()elsetextdefalphanum_key(key):return[get_int(c)forcinre.split("([0-9]+)",key)]returnsorted(iterable,key=alphanum_key)defget_ternary_table(formulae:dict,unique_groundings:List[str]=None)->dict:keys=list(list(formulae.values())[0].state().keys())formula=list(formulae.keys())[0]keys=[split_string_into_groundings(key)forkeyinkeys]operator=list(formulae.values())[0]ifunique_groundingsisNone:# unique_groundings = sorted(list(set(itertools.chain.from_iterable(keys))))unique_groundings=["F","U","T"]grounding_map=dict(zip(range(len(unique_groundings)),unique_groundings))number_of_unique_groundings=len(unique_groundings)grounding_grid=np.zeros((number_of_unique_groundings,number_of_unique_groundings),dtype="int,int")truth_grid=np.array([[""]*number_of_unique_groundings]*number_of_unique_groundings,dtype="<U10")foriinrange(grounding_grid.shape[0]):forjinrange(grounding_grid.shape[1]):row,column=grounding_map[i],grounding_map[j]truth_grid[i,j]=operator.state((row,column)).namerow_title=np.atleast_2d(unique_groundings).Tcolumn_data=np.atleast_2d([formula]+unique_groundings)truth_grid=np.hstack((row_title,truth_grid))truth_grid=np.vstack((column_data,truth_grid))returntruth_griddefget_n_ary_truth_table(formulae:dict,unique_groundings:List[str]=None)->dict:r""" Parameters ---------- :param formulae: Formulae is a dictionary with str:formula format ;i.e {"P or Q": <lnn.symbolic.logic.n_ary_neuron >} :param unique_groundings: Unique groundings that fill either the rows or columns i.e ["F", "U", "T"] Returns ------- Truth table in a dictionary format """keys=list(list(formulae.values())[0].state().keys())formula=list(formulae.keys())[0]keys=[split_string_into_groundings(key)forkeyinkeys]ifunique_groundingsisNone:unique_groundings=sorted(list(set(itertools.chain.from_iterable(keys))))truth={f"{formula}":unique_groundings}forunique_groundinginunique_groundings:table_columns=list(filter(lambdapartial_grounding:partial_grounding[0].startswith(f"{unique_grounding}"),keys,))for_,formulainformulae.items():truth[unique_grounding]=[formula.state(table_column).namefortable_columnintable_columns]returntruth
[docs]defpretty_truth_table(formulae:dict,unique_groundings:List[str]=None)->None:r""" Parameters ---------- :param formulae: Formulae is a dictionary with str:formula format ;i.e {"P or Q": <lnn.symbolic.logic.n_ary_neuron >} :param arity: The number of variables specified :param unique_groundings: unique_groundings: Unique groundings that fill either the rows or columns i.e ["F", "U", "T"] Returns ------- A pretty truth table """keys=list(list(formulae.values())[0].state().keys())iflen(keys[0])<=2:table=get_binary_truth_table(formulae)print(tabulate(table,headers="keys",tablefmt="fancy_grid"))else:table=get_ternary_table(formulae,unique_groundings)print(tabulate(table,tablefmt="fancy_grid"))
defgenerate_truth_table(P:Predicate,Q:Predicate,states=None)->None:r""" Parameters ---------- P: Predicate P Q: Predicate Q states: Data that you would like to each of the predicates Returns ------- Nothing, causes side effect on P and Q """ifstatesisNone:states=[Fact.FALSE,Fact.UNKNOWN,Fact.TRUE]idx=[f"{i}"foriinrange(len(states))]data=dict(zip(idx,states))P.add_data(data)Q.add_data(data)deftruth_table(n:int,states=None)->List[Tuple[Fact,...]]:ifstatesisNone:states=[FALSE,TRUE]returnlist(itertools.product(states,repeat=n))deftruth_table_dict(*args:str,states=None):ifstatesisNone:states=[FALSE,TRUE]forinstanceinitertools.product(states,repeat=len(args)):yielddict(zip(args,instance))deffact_to_bool(*fact:Fact)->Union[Fact,bool,Tuple[bool,...]]:iflen(fact)>1:returntuple(map(fact_to_bool,fact))iffact[0]isTRUE:returnTrueeliffact[0]isFALSE:returnFalseelse:returnfact[0]defbool_to_fact(*truth:bool)->Union[Fact,Tuple[Fact,...]]:iflen(truth)>1:returntuple(map(bool_to_fact,truth))returnTRUEiftruth[0]elseFALSE
[docs]defpredicate_truth_table(*args:str,arity:int,model,states=None):""" predicate_truth_table("p", "q", "r", model=model) randomises the truth table into a predicate by str(int) rows Returns ------- model : Model """ifstatesisNone:states=[FALSE,TRUE]fromlnnimportPredicate# noqa: F401n=len(args)TT=np.array(truth_table(n,states))_range=list(range(len(TT)))foridx,arginenumerate(args):model[arg]=Predicate(arg,arity=arity)random.shuffle(_range)foriin_range:grounding=f"{i}"ifarity==1else(f"{i}",)*aritytruth=TT[i,idx].item()model[arg].add_data({grounding:truth})returnmodel