MachineIntelligenceCore:NeuralNets
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Friends Macros
mic::neural_nets::optimization::GradPID< eT > Class Template Reference

GradPID - adaptive gradient descent with proportional, integral and derivative coefficients. More...

#include <GradPID.hpp>

Inheritance diagram for mic::neural_nets::optimization::GradPID< eT >:
Collaboration diagram for mic::neural_nets::optimization::GradPID< eT >:

Public Member Functions

 GradPID (size_t rows_, size_t cols_, eT decay_=0.9, eT eps_=1e-8)
 
mic::types::MatrixPtr< eT > calculateUpdate (mic::types::MatrixPtr< eT > x_, mic::types::MatrixPtr< eT > dx_, eT learning_rate_=0.001)
 
- Public Member Functions inherited from mic::neural_nets::optimization::OptimizationFunction< eT >
 OptimizationFunction ()
 
virtual ~OptimizationFunction ()
 Virtual destructor - empty. More...
 
virtual void update (mic::types::MatrixPtr< eT > p_, mic::types::MatrixPtr< eT > dp_, eT learning_rate_, eT decay_=0.0)
 
virtual void update (mic::types::MatrixPtr< eT > p_, mic::types::MatrixPtr< eT > x_, mic::types::MatrixPtr< eT > y_, eT learning_rate_=0.001)
 

Protected Attributes

eT decay
 Decay ratio, similar to momentum. More...
 
eT eps
 Smoothing term that avoids division by zero. More...
 
eT p_rate
 Adaptive proportional factor (learning rate). More...
 
eT i_rate
 Adaptive integral factor (learning rate). More...
 
eT d_rate
 Adaptive proportional factor (learning rate). More...
 
mic::types::MatrixPtr< eT > Edx
 Decaying average of gradients up to time t - E[g]. More...
 
mic::types::MatrixPtr< eT > dx_prev
 Previous value of gradients. More...
 
mic::types::MatrixPtr< eT > deltaP
 Proportional update. More...
 
mic::types::MatrixPtr< eT > deltaI
 Integral update. More...
 
mic::types::MatrixPtr< eT > deltaD
 Derivative update. More...
 
mic::types::MatrixPtr< eT > delta
 Calculated update. More...
 

Detailed Description

template<typename eT = float>
class mic::neural_nets::optimization::GradPID< eT >

GradPID - adaptive gradient descent with proportional, integral and derivative coefficients.

Author
tkornuta

Definition at line 40 of file GradPID.hpp.

Constructor & Destructor Documentation

template<typename eT = float>
mic::neural_nets::optimization::GradPID< eT >::GradPID ( size_t  rows_,
size_t  cols_,
eT  decay_ = 0.9,
eT  eps_ = 1e-8 
)
inline

Constructor. Sets dimensions, values of decay (default=0.9) and eps (default=1e-8).

Parameters
rows_Number of rows of the updated matrix/its gradient.
cols_Number of columns of the updated matrix/its gradient.

Definition at line 48 of file GradPID.hpp.

References mic::neural_nets::optimization::GradPID< eT >::delta, mic::neural_nets::optimization::GradPID< eT >::deltaD, mic::neural_nets::optimization::GradPID< eT >::deltaI, mic::neural_nets::optimization::GradPID< eT >::deltaP, mic::neural_nets::optimization::GradPID< eT >::dx_prev, and mic::neural_nets::optimization::GradPID< eT >::Edx.

Member Function Documentation

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::GradPID< eT >::calculateUpdate ( mic::types::MatrixPtr< eT >  x_,
mic::types::MatrixPtr< eT >  dx_,
eT  learning_rate_ = 0.001 
)
inlinevirtual

Member Data Documentation

template<typename eT = float>
eT mic::neural_nets::optimization::GradPID< eT >::d_rate
protected

Adaptive proportional factor (learning rate).

Definition at line 151 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::calculateUpdate().

template<typename eT = float>
eT mic::neural_nets::optimization::GradPID< eT >::decay
protected

Decay ratio, similar to momentum.

Definition at line 139 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::calculateUpdate().

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::GradPID< eT >::delta
protected
template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::GradPID< eT >::deltaD
protected

Derivative update.

Definition at line 166 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::GradPID().

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::GradPID< eT >::deltaI
protected

Integral update.

Definition at line 163 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::GradPID().

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::GradPID< eT >::deltaP
protected

Proportional update.

Definition at line 160 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::GradPID().

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::GradPID< eT >::dx_prev
protected

Previous value of gradients.

Definition at line 157 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::GradPID().

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::GradPID< eT >::Edx
protected

Decaying average of gradients up to time t - E[g].

Definition at line 154 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::calculateUpdate(), and mic::neural_nets::optimization::GradPID< eT >::GradPID().

template<typename eT = float>
eT mic::neural_nets::optimization::GradPID< eT >::eps
protected

Smoothing term that avoids division by zero.

Definition at line 142 of file GradPID.hpp.

template<typename eT = float>
eT mic::neural_nets::optimization::GradPID< eT >::i_rate
protected

Adaptive integral factor (learning rate).

Definition at line 148 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::calculateUpdate().

template<typename eT = float>
eT mic::neural_nets::optimization::GradPID< eT >::p_rate
protected

Adaptive proportional factor (learning rate).

Definition at line 145 of file GradPID.hpp.

Referenced by mic::neural_nets::optimization::GradPID< eT >::calculateUpdate().


The documentation for this class was generated from the following file: