MachineIntelligenceCore:NeuralNets
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Friends Macros
mic::neural_nets::optimization::RMSProp< eT > Class Template Reference

Update using RMSProp - adaptive gradient descent with running average E[g^2]. More...

#include <RMSProp.hpp>

Inheritance diagram for mic::neural_nets::optimization::RMSProp< eT >:
Collaboration diagram for mic::neural_nets::optimization::RMSProp< eT >:

Public Member Functions

 RMSProp (size_t rows_, size_t cols_, eT decay_=0.9, eT eps_=1e-8)
 
mic::types::MatrixPtr< eT > calculateUpdate (mic::types::MatrixPtr< eT > x_, mic::types::MatrixPtr< eT > dx_, eT learning_rate_)
 
- Public Member Functions inherited from mic::neural_nets::optimization::OptimizationFunction< eT >
 OptimizationFunction ()
 
virtual ~OptimizationFunction ()
 Virtual destructor - empty. More...
 
virtual void update (mic::types::MatrixPtr< eT > p_, mic::types::MatrixPtr< eT > dp_, eT learning_rate_, eT decay_=0.0)
 
virtual void update (mic::types::MatrixPtr< eT > p_, mic::types::MatrixPtr< eT > x_, mic::types::MatrixPtr< eT > y_, eT learning_rate_=0.001)
 

Protected Attributes

eT decay
 Decay ratio, similar to momentum. More...
 
eT eps
 Smoothing term that avoids division by zero. More...
 
mic::types::MatrixPtr< eT > EG
 Decaying average of the squares of gradients up to time t ("diagonal matrix") - E[g^2]. More...
 
mic::types::MatrixPtr< eT > delta
 Calculated update. More...
 

Detailed Description

template<typename eT = float>
class mic::neural_nets::optimization::RMSProp< eT >

Update using RMSProp - adaptive gradient descent with running average E[g^2].

Author
tkornuta

Definition at line 39 of file RMSProp.hpp.

Constructor & Destructor Documentation

template<typename eT = float>
mic::neural_nets::optimization::RMSProp< eT >::RMSProp ( size_t  rows_,
size_t  cols_,
eT  decay_ = 0.9,
eT  eps_ = 1e-8 
)
inline

Constructor. Sets dimensions, values of decay (default=0.9) and eps (default=1e-8).

Parameters
rows_Number of rows of the updated matrix/its gradient.
cols_Number of columns of the updated matrix/its gradient.

Definition at line 47 of file RMSProp.hpp.

References mic::neural_nets::optimization::RMSProp< eT >::delta, and mic::neural_nets::optimization::RMSProp< eT >::EG.

Member Function Documentation

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::RMSProp< eT >::calculateUpdate ( mic::types::MatrixPtr< eT >  x_,
mic::types::MatrixPtr< eT >  dx_,
eT  learning_rate_ 
)
inlinevirtual

Calculates the update according to the RMSProp update rule.

Parameters
x_Pointer to the current matrix.
dx_Pointer to current gradient of that matrix.
learning_rate_Learning rate (default=0.001). NOT USED!

Implements mic::neural_nets::optimization::OptimizationFunction< eT >.

Definition at line 61 of file RMSProp.hpp.

References mic::neural_nets::optimization::RMSProp< eT >::decay, mic::neural_nets::optimization::RMSProp< eT >::delta, mic::neural_nets::optimization::RMSProp< eT >::EG, and mic::neural_nets::optimization::RMSProp< eT >::eps.

Member Data Documentation

template<typename eT = float>
eT mic::neural_nets::optimization::RMSProp< eT >::decay
protected

Decay ratio, similar to momentum.

Definition at line 83 of file RMSProp.hpp.

Referenced by mic::neural_nets::optimization::RMSProp< eT >::calculateUpdate().

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::RMSProp< eT >::delta
protected
template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::RMSProp< eT >::EG
protected

Decaying average of the squares of gradients up to time t ("diagonal matrix") - E[g^2].

Definition at line 89 of file RMSProp.hpp.

Referenced by mic::neural_nets::optimization::RMSProp< eT >::calculateUpdate(), and mic::neural_nets::optimization::RMSProp< eT >::RMSProp().

template<typename eT = float>
eT mic::neural_nets::optimization::RMSProp< eT >::eps
protected

Smoothing term that avoids division by zero.

Definition at line 86 of file RMSProp.hpp.

Referenced by mic::neural_nets::optimization::RMSProp< eT >::calculateUpdate().


The documentation for this class was generated from the following file: