MachineIntelligenceCore:NeuralNets
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Friends Macros
mic::neural_nets::optimization::artificial_landscapes::Rosenbrock2DFunction< eT > Class Template Reference

2D Rosenbrock function. More...

#include <ArtificialLandscapes.hpp>

Inheritance diagram for mic::neural_nets::optimization::artificial_landscapes::Rosenbrock2DFunction< eT >:
Collaboration diagram for mic::neural_nets::optimization::artificial_landscapes::Rosenbrock2DFunction< eT >:

Public Member Functions

 Rosenbrock2DFunction (eT a_=1, eT b_=100)
 Constructor. More...
 
eT calculateValue (mic::types::MatrixPtr< eT > x_)
 
mic::types::MatrixPtr< eT > calculateGradient (mic::types::MatrixPtr< eT > x_)
 
- Public Member Functions inherited from mic::neural_nets::optimization::artificial_landscapes::DifferentiableFunction< eT >
 DifferentiableFunction (size_t dims_)
 Constructor. Asserts whether dimensions must be > 0. More...
 
virtual ~DifferentiableFunction ()
 Virtual destructor - empty. More...
 
mic::types::MatrixPtr< eT > minArguments ()
 Returns the vector of arguments being the function minimum. More...
 
eT minValue ()
 Returns min value of the function. More...
 

Private Attributes

eT a
 Coefficients. More...
 
eT b
 

Additional Inherited Members

- Protected Attributes inherited from mic::neural_nets::optimization::artificial_landscapes::DifferentiableFunction< eT >
size_t dims
 Number of function dimensions (input variables). More...
 
mic::types::MatrixPtr< eT > min_arguments
 vector of arguments for which the function has a minimum. More...
 
eT min_value
 Minimal value. More...
 

Detailed Description

template<typename eT = float>
class mic::neural_nets::optimization::artificial_landscapes::Rosenbrock2DFunction< eT >

2D Rosenbrock function.

Author
tkornuta

Definition at line 187 of file ArtificialLandscapes.hpp.

Constructor & Destructor Documentation

template<typename eT = float>
mic::neural_nets::optimization::artificial_landscapes::Rosenbrock2DFunction< eT >::Rosenbrock2DFunction ( eT  a_ = 1,
eT  b_ = 100 
)
inline

Constructor.

Definition at line 191 of file ArtificialLandscapes.hpp.

Member Function Documentation

template<typename eT = float>
mic::types::MatrixPtr<eT> mic::neural_nets::optimization::artificial_landscapes::Rosenbrock2DFunction< eT >::calculateGradient ( mic::types::MatrixPtr< eT >  x_)
inlinevirtual

Calculates gradient of a function in a given point.

Implements mic::neural_nets::optimization::artificial_landscapes::DifferentiableFunction< eT >.

Definition at line 218 of file ArtificialLandscapes.hpp.

template<typename eT = float>
eT mic::neural_nets::optimization::artificial_landscapes::Rosenbrock2DFunction< eT >::calculateValue ( mic::types::MatrixPtr< eT >  x_)
inlinevirtual

Calculates value of a function for a given point.

Implements mic::neural_nets::optimization::artificial_landscapes::DifferentiableFunction< eT >.

Definition at line 202 of file ArtificialLandscapes.hpp.

Member Data Documentation


The documentation for this class was generated from the following file: