Source code for ibm_watson_machine_learning.foundation_models.model

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2023-2024.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------

from __future__ import print_function
from typing import Optional

from ibm_watson_machine_learning.foundation_models.inference import ModelInference

_DEFAULT_LIST_LENGTH = 50


[docs] class Model(ModelInference): """Instantiate the model interface. .. hint:: To use the Model class with LangChain, use the :func:`to_langchain() <ibm_watson_machine_learning.foundation_models.Model.to_langchain>` function. :param model_id: the type of model to use :type model_id: str :param credentials: credentials to Watson Machine Learning instance :type credentials: dict :param params: parameters to use during generate requests :type params: dict, optional :param project_id: ID of the Watson Studio project :type project_id: str, optional :param space_id: ID of the Watson Studio space :type space_id: str, optional :param verify: user can pass as verify one of following: - the path to a CA_BUNDLE file - the path of directory with certificates of trusted CAs - `True` - default path to truststore will be taken - `False` - no verification will be made :type verify: bool or str, optional .. note:: One of these parameters is required: ['project_id ', 'space_id'] .. hint:: You can copy the project_id from Project's Manage tab (Project -> Manage -> General -> Details). **Example** .. code-block:: python from ibm_watson_machine_learning.foundation_models import Model from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes, DecodingMethods # To display example params enter GenParams().get_example_values() generate_params = { GenParams.MAX_NEW_TOKENS: 25 } model = Model( model_id=ModelTypes.FLAN_UL2, params=generate_params, credentials={ "apikey": "***", "url": "https://us-south.ml.cloud.ibm.com" }, project_id="*****" ) """ def __init__(self, model_id: str, credentials: dict, params: dict = None, project_id: str = None, space_id: str = None, verify=None) -> None: ModelInference.__init__(self, model_id=model_id, credentials=credentials, params=params, project_id=project_id, space_id=space_id, verify=verify )
[docs] def get_details(self): """Get model's details :return: model's details :rtype: dict **Example** .. code-block:: python model.get_details() """ return super().get_details()
[docs] def to_langchain(self): """ :return: WatsonxLLM wrapper for watsonx foundation models :rtype: WatsonxLLM **Example** .. code-block:: python from langchain import PromptTemplate from langchain.chains import LLMChain from ibm_watson_machine_learning.foundation_models import Model from ibm_watson_machine_learning.foundation_models.utils.enums import ModelTypes flan_ul2_model = Model( model_id=ModelTypes.FLAN_UL2, credentials={ "apikey": "***", "url": "https://us-south.ml.cloud.ibm.com" }, project_id="*****" ) prompt_template = "What color is the {flower}?" llm_chain = LLMChain(llm=flan_ul2_model.to_langchain(), prompt=PromptTemplate.from_template(prompt_template)) llm_chain('sunflower') """ from ibm_watson_machine_learning.foundation_models.extensions.langchain.llm import WatsonxLLM return WatsonxLLM(self)
[docs] def generate(self, prompt, params=None, guardrails: bool = False, guardrails_hap_params: Optional[dict] = None, guardrails_pii_params: Optional[dict] = None, concurrency_limit=10, async_mode: bool = False): """Given a text prompt as input, and parameters the selected model (model_id) will generate a completion text as generated_text. :param params: meta props for text generation, use ``ibm_watson_machine_learning.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict :param concurrency_limit: number of requests that will be sent in parallel, max is 10 :type concurrency_limit: int :param prompt: the prompt string or list of strings. If list of strings is passed requests will be managed in parallel with the rate of concurency_limit :type prompt: str, list :param guardrails: If True then potentially hateful, abusive, and/or profane language (HAP) detection filter is toggle on for both prompt and generated text, defaults to False :type guardrails: bool :param guardrails_hap_params: meta props for HAP moderations, use ``ibm_watson_machine_learning.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type params: dict :param async_mode: If True then yield results asynchronously (using generator). In this case both prompt and generated text will be concatenated in the final response - under `generated_text`, defaults to False :type async_mode: bool :return: scoring result containing generated content :rtype: dict **Example** .. code-block:: python q = "What is 1 + 1?" generated_response = model.generate(prompt=q) print(generated_response['results'][0]['generated_text']) """ return super().generate(prompt=prompt, params=params, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, concurrency_limit=concurrency_limit, async_mode=async_mode)
[docs] def generate_text(self, prompt, params=None, raw_response=False, guardrails=False, guardrails_hap_params=None, guardrails_pii_params=None, concurrency_limit=10): """Given a text prompt as input, and parameters the selected model (model_id) will generate a completion text as generated_text. :param params: meta props for text generation, use ``ibm_watson_machine_learning.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict :param concurrency_limit: number of requests that will be sent in parallel, max is 10 :type concurrency_limit: int :param prompt: the prompt string or list of strings. If list of strings is passed requests will be managed in parallel with the rate of concurency_limit :type prompt: str, list :param raw_response: return the whole response object :type raw_response: bool, optional :param guardrails: If True then potentially hateful, abusive, and/or profane language (HAP) detection filter is toggle on for both prompt and generated text, defaults to False :type guardrails: bool :param guardrails_hap_params: meta props for HAP moderations, use ``ibm_watson_machine_learning.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type params: dict :return: generated content :rtype: str **Example** .. code-block:: python q = "What is 1 + 1?" generated_text = model.generate_text(prompt=q) print(generated_text) """ return super().generate_text(prompt=prompt, params=params, raw_response=raw_response, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, concurrency_limit=concurrency_limit)
[docs] def generate_text_stream(self, prompt, params=None, raw_response=False, guardrails=False, guardrails_hap_params=None, guardrails_pii_params=None): """Given a text prompt as input, and parameters the selected model (model_id) will generate a streamed text as generate_text_stream. :param params: meta props for text generation, use ``ibm_watson_machine_learning.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict :param prompt: the prompt string :type prompt: str, :param raw_response: yields the whole response object :type raw_response: bool, optional :param guardrails: If True then potentially hateful, abusive, and/or profane language (HAP) detection filter is toggle on for both prompt and generated text, defaults to False :type guardrails: bool :param guardrails_hap_params: meta props for HAP moderations, use ``ibm_watson_machine_learning.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type params: dict :return: scoring result containing generated content :rtype: generator **Example** .. code-block:: python q = "Write an epigram about the sun" generated_response = model.generate_text_stream(prompt=q) for chunk in generated_response: print(chunk, end='') """ return super().generate_text_stream(prompt=prompt, params=params, raw_response=raw_response, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params)
[docs] def tokenize(self, prompt, return_tokens: bool = False): """ The text tokenize operation allows you to check the conversion of provided input to tokens for a given model. It splits text into words or sub-words, which then are converted to ids through a look-up table (vocabulary). Tokenization allows the model to have a reasonable vocabulary size. :param prompt: the prompt string :type prompt: str :param return_tokens: the parameter for text tokenization, defaults to False :type return_tokens: bool :return: the result of tokenizing the input string. :rtype: dict **Example** .. code-block:: python q = "Write an epigram about the moon" tokenized_response = model.tokenize(prompt=q, return_tokens=True) print(tokenized_response["result"]) """ return super().tokenize(prompt=prompt, return_tokens=return_tokens)