Source code for ibm_watson_machine_learning.repository

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2017-2024.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------

from __future__ import print_function

import os
from warnings import warn

from dataclasses import dataclass
from pandas import DataFrame

import ibm_watson_machine_learning._wrappers.requests as requests
from ibm_watson_machine_learning.experiments import Experiments
from ibm_watson_machine_learning.functions import Functions
from ibm_watson_machine_learning.libs.repo.mlrepositoryclient import MLRepositoryClient
from ibm_watson_machine_learning.messages.messages import Messages
from ibm_watson_machine_learning.metanames import ModelMetaNames, ExperimentMetaNames, FunctionMetaNames, \
    PipelineMetanames, SpacesMetaNames, MemberMetaNames, FunctionNewMetaNames
from ibm_watson_machine_learning.models import Models
from ibm_watson_machine_learning.pipelines import Pipelines
from ibm_watson_machine_learning.spaces import Spaces
from ibm_watson_machine_learning.utils import get_url, INSTANCE_DETAILS_TYPE, is_python_2, inherited_docstring
from ibm_watson_machine_learning.wml_client_error import WMLClientError
from ibm_watson_machine_learning.wml_resource import WMLResource

_DEFAULT_LIST_LENGTH = 50


[docs] class Repository(WMLResource): """Store and manage models, functions, spaces, pipelines and experiments using Watson Machine Learning Repository. To view ModelMetaNames, use: .. code-block:: python client.repository.ModelMetaNames.show() To view ExperimentMetaNames, use: .. code-block:: python client.repository.ExperimentMetaNames.show() To view FunctionMetaNames, use: .. code-block:: python client.repository.FunctionMetaNames.show() To view PipelineMetaNames, use: .. code-block:: python client.repository.PipelineMetaNames.show() """
[docs] @dataclass class ModelAssetTypes: """Data class with supported model asset types.""" DO_DOCPLEX_20_1: str = 'do-docplex_20.1' DO_OPL_20_1: str = 'do-opl_20.1' DO_CPLEX_20_1: str = 'do-cplex_20.1' DO_CPO_20_1: str = 'do-cpo_20.1' DO_DOCPLEX_22_1: str = 'do-docplex_22.1' DO_OPL_22_1: str = 'do-opl_22.1' DO_CPLEX_22_1: str = 'do-cplex_22.1' DO_CPO_22_1: str = 'do-cpo_22.1' WML_HYBRID_0_1: str = 'wml-hybrid_0.1' PMML_4_2_1: str = 'pmml_4.2.1' PYTORCH_ONNX_1_12: str = 'pytorch-onnx_1.12' PYTORCH_ONNX_RT22_2: str = 'pytorch-onnx_rt22.2' PYTORCH_ONNX_2_0: str = 'pytorch-onnx_2.0' PYTORCH_ONNX_RT23_1: str = 'pytorch-onnx_rt23.1' SCIKIT_LEARN_1_1: str = 'scikit-learn_1.1' MLLIB_3_3: str = 'mllib_3.3' SPSS_MODELER_17_1: str = 'spss-modeler_17.1' SPSS_MODELER_18_1: str = 'spss-modeler_18.1' SPSS_MODELER_18_2: str = 'spss-modeler_18.2' TENSORFLOW_2_9: str = 'tensorflow_2.9' TENSORFLOW_RT22_2: str = 'tensorflow_rt22.2' TENSORFLOW_2_12: str = 'tensorflow_2.12' TENSORFLOW_RT23_1: str = 'tensorflow_rt23.1' XGBOOST_1_6: str = 'xgboost_1.6' PROMPT_TUNE_1_0: str = 'prompt_tune_1.0' CUSTOM_FOUNDATION_MODEL_1_0: str = 'custom_foundation_model_1.0'
cloud_platform_spaces = False icp_platform_spaces = False def __init__(self, client): WMLResource.__init__(self, __name__, client) if not client.ICP and not client.WSD and not client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: Repository._validate_type(client.service_instance.details, u'instance_details', dict, True) Repository._validate_type_of_details(client.service_instance.details, INSTANCE_DETAILS_TYPE) self._ICP = client.ICP self._WSD = client.WSD self._ml_repository_client = None Repository.cloud_platform_spaces = client.CLOUD_PLATFORM_SPACES Repository.icp_platform_spaces = client.ICP_PLATFORM_SPACES self.ExperimentMetaNames = ExperimentMetaNames() if not client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: self.FunctionMetaNames = FunctionMetaNames() else: self.FunctionMetaNames = FunctionNewMetaNames() self.PipelineMetaNames = PipelineMetanames() self.SpacesMetaNames = SpacesMetaNames() self.ModelMetaNames = ModelMetaNames() self.MemberMetaNames = MemberMetaNames() self._refresh_repo_client() # regular token is initialized in service_instance def _refresh_repo_client(self): # If apiKey is passed in credentials then refresh repoclient with IAM token else MLToken self._ml_repository_client = MLRepositoryClient(self._wml_credentials[u'url']) if self._client.proceed is True: if self._client.service_instance._is_iam() is not None: self._ml_repository_client.authorize_with_token(self._client.wml_token) self._ml_repository_client._add_header('X-WML-User-Client', 'PythonClient') if self._client.project_id is not None: self._ml_repository_client._add_header('X-Watson-Project-ID', self._client.project_id) else: if self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES: platform_spaces = True else: platform_spaces = False self._ml_repository_client.authorize_with_iamtoken(self._client.wml_token, self._wml_credentials[u'instance_id'], platform_spaces) self._ml_repository_client._add_header('X-WML-User-Client', 'PythonClient') # Cloud Convergence if not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: self._ml_repository_client._add_header('ML-Instance-ID', self._wml_credentials[u'instance_id']) if self._client.project_id is not None: self._ml_repository_client._add_header('X-Watson-Project-ID', self._client.project_id) else: if self._client._is_IAM(): if self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES: platform_spaces = True else: platform_spaces = False self._ml_repository_client.authorize_with_iamtoken(self._client.wml_token, self._wml_credentials[u'instance_id'], platform_spaces) self._ml_repository_client._add_header('X-WML-User-Client', 'PythonClient') # Cloud Convergence if not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: self._ml_repository_client._add_header('ML-Instance-ID', self._wml_credentials[u'instance_id']) if self._client.project_id is not None: self._ml_repository_client._add_header('X-Watson-Project-ID', self._client.project_id) else: if self._ICP: self._repotoken = self._client.service_instance._get_token() self._ml_repository_token = self._repotoken.replace('Bearer', '') self._ml_repository_client.authorize_with_token(self._ml_repository_token) else: if not self._client.WSD: self._ml_repository_client.authorize(self._wml_credentials[u'username'], self._wml_credentials[u'password']) self._ml_repository_client._add_header('X-WML-User-Client', 'PythonClient') if self._client.project_id is not None: self._ml_repository_client._add_header('X-Watson-Project-ID', self._client.project_id)
[docs] @inherited_docstring(Experiments.store, {'experiments.get_href': 'repository.get_experiment_href'}) def store_experiment(self, meta_props): if self._client.WSD: raise WMLClientError(u'Experiment APIs are not supported in Watson Studio Desktop.') return self._client.experiments.store(meta_props)
[docs] @inherited_docstring(Spaces.store) def store_space(self, meta_props): if self._client.WSD or self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return self._client.spaces.store(meta_props)
[docs] @inherited_docstring(Spaces.create_member) def create_member(self, space_uid, meta_props): if self._client.WSD or self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return self._client.spaces.create_member(space_uid, meta_props)
@staticmethod def _meta_props_to_repository_v3_style(meta_props): if is_python_2(): new_meta_props = meta_props.copy() for key in new_meta_props: if type(new_meta_props[key]) is unicode: new_meta_props[key] = str(new_meta_props[key]) return new_meta_props else: return meta_props
[docs] @inherited_docstring(Pipelines.store) def store_pipeline(self, meta_props): return self._client.pipelines.store(meta_props)
[docs] @inherited_docstring(Models.store, {'store()': 'store_model()'}) def store_model(self, model=None, meta_props=None, training_data=None, training_target=None, pipeline=None, feature_names=None, label_column_names=None, subtrainingId=None, round_number=None, experiment_metadata=None, training_id=None): return self._client._models.store(model=model, meta_props=meta_props, training_data=training_data, training_target=training_target, pipeline=pipeline, feature_names=feature_names, label_column_names=label_column_names, subtrainingId=subtrainingId, round_number=round_number, experiment_metadata=experiment_metadata, training_id=training_id)
def clone(self, artifact_id, space_id=None, action="copy", rev_id=None): raise WMLClientError(Messages.get_message(message_id="cloning_not_supported"))
[docs] @inherited_docstring(Functions.store) def store_function(self, function, meta_props): return self._client._functions.store(function, meta_props)
[docs] @inherited_docstring(Models.create_revision) def create_model_revision(self, model_uid): return self._client._models.create_revision(model_uid=model_uid)
[docs] @inherited_docstring(Pipelines.create_revision) def create_pipeline_revision(self, pipeline_uid): return self._client.pipelines.create_revision(pipeline_uid=pipeline_uid)
[docs] @inherited_docstring(Functions.create_revision) def create_function_revision(self, function_uid): return self._client._functions.create_revision(function_uid=function_uid)
[docs] @inherited_docstring(Experiments.create_revision, {'experiment_id': 'experiment_uid'}) def create_experiment_revision(self, experiment_uid): return self._client.experiments.create_revision(experiment_id=experiment_uid)
[docs] @inherited_docstring(Models.update, {'meta_props': 'updated_meta_props'}) def update_model(self, model_uid, updated_meta_props=None, update_model=None): return self._client._models.update(model_uid, updated_meta_props, update_model)
[docs] @inherited_docstring(Experiments.update) def update_experiment(self, experiment_uid, changes): if self._client.WSD: raise WMLClientError('Experiments APIs are not supported in IBM Watson Studio Desktop.') return self._client.experiments.update(experiment_uid, changes)
[docs] @inherited_docstring(Functions.update) def update_function(self, function_uid, changes, update_function=None): return self._client._functions.update(function_uid, changes, update_function)
[docs] @inherited_docstring(Pipelines.update) def update_pipeline(self, pipeline_uid, changes): return self._client.pipelines.update(pipeline_uid, changes)
[docs] @inherited_docstring(Spaces.update) def update_space(self, space_uid, changes): if self._client.WSD or self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return self._client.spaces.update(space_uid, changes)
[docs] @inherited_docstring(Models.load) def load(self, artifact_uid): return self._client._models.load(artifact_uid)
[docs] def download(self, artifact_uid, filename='downloaded_artifact.tar.gz', rev_uid=None, format=None): """Downloads configuration file for artifact with specified uid. :param artifact_uid: Unique Id of model, function, runtime or library :type artifact_uid: str :param filename: name of the file to which the artifact content has to be downloaded :type filename: str, optional :return: path to the downloaded artifact content :rtype: str **Examples** .. code-block:: python client.repository.download(model_uid, 'my_model.tar.gz') client.repository.download(model_uid, 'my_model.json') # if original model was saved as json, works only for xgboost 1.3 """ self._validate_type(artifact_uid, 'artifact_uid', str, True) self._validate_type(filename, 'filename', str, True) res = self._check_artifact_type(artifact_uid) if res['model'] is True: return self._client._models.download(artifact_uid, filename, rev_uid, format) elif res['function'] is True: return self._client._functions.download(artifact_uid, filename, rev_uid) elif not self._client.CLOUD_PLATFORM_SPACES and not self._client.CPD_version and res['library'] is True: return self._client.runtimes.download_library(artifact_uid, filename) elif not self._client.CLOUD_PLATFORM_SPACES and not self._client.CPD_version and res['runtime'] is True: return self._client.runtimes.download_configuration(artifact_uid, filename) else: raise WMLClientError( 'Unexpected type of artifact to download or Artifact with artifact_uid: \'{}\' does not exist.'.format( artifact_uid))
[docs] def delete(self, artifact_uid): """Delete model, experiment, pipeline, space, runtime, library or function from repository. :param artifact_uid: Unique id of stored model, experiment, function, pipeline, space, library or runtime :type artifact_uid: str :return: status ("SUCCESS" or "FAILED") :rtype: str **Example** .. code-block:: python client.repository.delete(artifact_uid) """ Repository._validate_type(artifact_uid, u'artifact_uid', str, True) if ( self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES) and self._if_deployment_exist_for_asset( artifact_uid): raise WMLClientError( u'Cannot delete artifact that has existing deployments. Please delete all associated deployments and try again') params = self._client._params() if Repository.cloud_platform_spaces or self._client.ICP_PLATFORM_SPACES: # ideally purge_on_delete=true query param has to be provided for deletion of cams assets # This doesn't seem to be done for CP4D 3.0.1 and before. We should do this for CP4D 3.5 params.update({'purge_on_delete': 'true'}) response = requests.delete(self._client.service_instance._href_definitions.get_asset_href(artifact_uid), params=params, headers=self._client._get_headers()) if response.status_code == 200 or response.status_code == 204: if response.status_code == 200: response = self._handle_response(200, u'delete assets', response) return response else: response = self._handle_response(204, u'delete assets', response) return response else: if Repository.cloud_platform_spaces or self._client.ICP_PLATFORM_SPACES: # Since we are using /v2/assets for deletion, don't need all the logic # in the following else block. The else block is applicable only for cloud beta # and has to be kept till then. For 3.5, move logic to same as cloud convergence # for deletion if response.status_code == 404: raise WMLClientError(u'Artifact with artifact_uid: \'{}\' does not exist.'.format(artifact_uid)) else: raise WMLClientError("Deletion error for the given id : ", response.text) else: artifact_type = self._check_artifact_type(artifact_uid) self._logger.debug(u'Attempting deletion of artifact with type: \'{}\''.format(str(artifact_type))) if self._client.WSD: if artifact_type[u'model'] is True: return self._client._models.delete(artifact_uid) elif artifact_type[u'pipeline'] is True: return self._client.pipelines.delete(artifact_uid) elif artifact_type[u'function'] is True: return self._client._functions.delete(artifact_uid) else: raise WMLClientError(u'Artifact with artifact_uid: \'{}\' does not exist.'.format(artifact_uid)) else: if artifact_type[u'model'] is True: return self._client._models.delete(artifact_uid) elif artifact_type[u'experiment'] is True: return self._client.experiments.delete(artifact_uid) elif artifact_type[u'pipeline'] is True: return self._client.pipelines.delete(artifact_uid) elif artifact_type[u'function'] is True: return self._client._functions.delete(artifact_uid) elif artifact_type[u'space'] is True: return self._client.spaces.delete(artifact_uid) elif artifact_type[u'runtime'] is True: return self._client.runtimes.delete(artifact_uid) elif artifact_type[u'library'] is True: return self._client.runtimes.delete_library(artifact_uid) else: raise WMLClientError(u'Artifact with artifact_uid: \'{}\' does not exist.'.format(artifact_uid))
[docs] def get_details(self, artifact_uid=None, spec_state=None): """Get metadata of stored artifacts. If `artifact_uid` is not specified returns all models, experiments, functions, pipelines, spaces, libraries and runtimes metadata. :param artifact_uid: Unique Id of stored model, experiment, function, pipeline, space, library or runtime :type artifact_uid: str, optional :param spec_state: software specification state, can be used only when `artifact_uid` is None :type spec_state: SpecStates, optional :return: stored artifact(s) metadata :rtype: dict (if artifact_uid is not None) or {"resources": [dict]} (if artifact_uid is None) **Examples** .. code-block:: python details = client.repository.get_details(artifact_uid) details = client.repository.get_details() Example of getting all repository assets with deprecated software specifications: .. code-block:: python from ibm_watson_machine_learning.lifecycle import SpecStates details = client.repository.get_details(spec_state=SpecStates.DEPRECATED) """ Repository._validate_type(artifact_uid, u'artifact_uid', str, False) if artifact_uid is None and self._client.WSD is None: model_details = self._client._models.get_details(spec_state=spec_state) experiment_details = self.get_experiment_details() if not spec_state else {'resources': []} pipeline_details = self.get_pipeline_details() if not spec_state else {'resources': []} function_details = self._client._functions.get_details(spec_state=spec_state) if not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: space_details = self._client.spaces.get_details() if not spec_state else {'resources': []} library_details = self._client.runtimes.get_library_details() if not spec_state else {'resources': []} runtime_details = self._client.runtimes.get_details() if not spec_state else {'resources': []} details = { u'models': model_details, u'experiments': experiment_details, u'pipeline': pipeline_details, u'runtimes': runtime_details, u'libraries': library_details, u'spaces': space_details, u'functions': function_details } else: details = { u'models': model_details, u'experiments': experiment_details, u'pipeline': pipeline_details, u'functions': function_details } else: if self._client.WSD and artifact_uid is None: raise WMLClientError( u' artifiact_uid is mandatory for get_details() in IBM Watson Studio Desktop.') uid_type = self._check_artifact_type(artifact_uid) if self._client.WSD: if uid_type[u'model'] is True: details = self._client._models.get_details(artifact_uid) elif uid_type[u'pipeline'] is True: details = self.get_pipeline_details(artifact_uid) elif uid_type[u'function'] is True: details = self._client._functions.get_details(artifact_uid) else: raise WMLClientError( u'Getting artifact details failed. Artifact uid: \'{}\' not found.'.format(artifact_uid)) else: if uid_type[u'model'] is True: details = self._client._models.get_details(artifact_uid) elif uid_type[u'experiment'] is True: details = self.get_experiment_details(artifact_uid) elif uid_type[u'pipeline'] is True: details = self.get_pipeline_details(artifact_uid) elif uid_type[u'function'] is True: details = self._client._functions.get_details(artifact_uid) elif not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES and uid_type[ u'runtime'] is True: details = self._client.runtimes.get_details(artifact_uid) elif not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES and uid_type[ u'library'] is True: details = self._client.runtimes.get_library_details(artifact_uid) elif not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES and uid_type[ u'space'] is True: details = self._client.spaces.get_details(artifact_uid) else: raise WMLClientError( u'Getting artifact details failed. Artifact uid: \'{}\' not found.'.format(artifact_uid)) return details
[docs] @inherited_docstring(Models.get_details) def get_model_details(self, model_uid=None, limit=None, asynchronous=False, get_all=False, spec_state=None): return self._client._models.get_details(model_uid, limit, asynchronous=asynchronous, get_all=get_all, spec_state=spec_state)
[docs] @inherited_docstring(Models.get_revision_details) def get_model_revision_details(self, model_uid, rev_uid): if not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: raise WMLClientError( 'Not supported. Revisions APIs are supported only for IBM Cloud Pak® for Data 3.0 and above.') return self._client._models.get_revision_details(model_uid, rev_uid)
[docs] @inherited_docstring(Experiments.get_details) def get_experiment_details(self, experiment_uid=None, limit=None, asynchronous=False, get_all=False): if self._client.WSD: raise WMLClientError('Experiment APIs are not supported in IBM Watson Studio Desktop.') Repository._validate_type(experiment_uid, u'experiment_uid', str, False) Repository._validate_type(limit, u'limit', int, False) Repository._validate_type(asynchronous, u'asynchronous', bool, False) Repository._validate_type(get_all, u'get_all', bool, False) return self._client.experiments.get_details(experiment_uid, limit, asynchronous, get_all)
[docs] @inherited_docstring(Experiments.get_revision_details, {'rev_uid': 'rev_id'}) def get_experiment_revision_details(self, experiment_uid, rev_id): if not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: raise WMLClientError( 'Not supported. Revisions APIs are supported only for IBM Cloud Pak® for Data 3.0 and above.') return self._client.experiments.get_revision_details(experiment_uid, rev_id)
[docs] @inherited_docstring(Functions.get_details) def get_function_details(self, function_uid=None, limit=None, asynchronous=False, get_all=False, spec_state=None): Repository._validate_type(function_uid, u'function_uid', str, False) Repository._validate_type(limit, u'limit', int, False) Repository._validate_type(asynchronous, u'asynchronous', bool, False) Repository._validate_type(get_all, u'get_all', bool, False) Repository._validate_type(spec_state, u'spec_state', object, False) return self._client._functions.get_details(function_uid, limit, asynchronous, get_all, spec_state)
[docs] @inherited_docstring(Functions.get_revision_details, {'rev_uid': 'rev_id'}) def get_function_revision_details(self, function_uid, rev_id): if not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: raise WMLClientError('Not supported in this release') return self._client._functions.get_revision_details(function_uid, rev_id)
[docs] @inherited_docstring(Pipelines.get_details) def get_pipeline_details(self, pipeline_uid=None, limit=None, asynchronous=False, get_all=False): Repository._validate_type(pipeline_uid, u'pipeline_uid', str, False) Repository._validate_type(limit, u'limit', int, False) Repository._validate_type(asynchronous, u'asynchronous', bool, False) Repository._validate_type(get_all, u'get_all', bool, False) return self._client.pipelines.get_details(pipeline_uid, limit, asynchronous, get_all)
[docs] @inherited_docstring(Pipelines.get_revision_details, {'rev_uid': 'rev_id'}) def get_pipeline_revision_details(self, pipeline_uid, rev_id): if not self._client.CLOUD_PLATFORM_SPACES and not self._client.ICP_PLATFORM_SPACES: raise WMLClientError( 'Not supported. Revisions APIs are supported only for IBM Cloud Pak® for Data 3.0 and above.') return self._client.pipelines.get_revision_details(pipeline_uid, rev_id)
[docs] @inherited_docstring(Spaces.get_details) def get_space_details(self, space_uid=None, limit=None): if self._client.WSD or self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") Repository._validate_type(space_uid, u'space_uid', str, False) Repository._validate_type(limit, u'limit', int, False) return self._client.spaces.get_details(space_uid, limit)
[docs] @inherited_docstring(Spaces.get_members_details) def get_members_details(self, space_uid, member_id=None, limit=None): if self._client.WSD or self._client.CLOUD_PLATFORM_SPACES or self._client.ICP_PLATFORM_SPACES: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return self._client.spaces.get_members_details(space_uid, member_id, limit)
[docs] @staticmethod @inherited_docstring(Models.get_href) def get_model_href(model_details): return Models.get_href(model_details)
[docs] @staticmethod def get_model_uid(model_details): """ This method is deprecated, please use ``get_id()`` instead." """ warn("This method is deprecated, please use get_model_id()") print("This method is deprecated, please use get_model_id()") return Models.get_id(model_details)
[docs] @staticmethod @inherited_docstring(Models.get_id) def get_model_id(model_details): return Models.get_id(model_details)
[docs] @staticmethod @inherited_docstring(Experiments.get_uid, {'experiments.get_details': 'repository.get_experiment_details'}) def get_experiment_uid(experiment_details): if 'WSD_PLATFORM' in os.environ and os.environ['WSD_PLATFORM'] == 'True': raise WMLClientError(u'Experiment APIs are not supported for Watson Studio Desktop.') return Experiments.get_uid(experiment_details)
[docs] @staticmethod @inherited_docstring(Experiments.get_id, {'experiments.get_details': 'repository.get_experiment_details'}) def get_experiment_id(experiment_details): if 'WSD_PLATFORM' in os.environ and os.environ['WSD_PLATFORM'] == 'True': raise WMLClientError(u'Experiment APIs are not supported for Watson Studio Desktop.') return Experiments.get_id(experiment_details)
[docs] @staticmethod @inherited_docstring(Experiments.get_href, {'experiments.get_details': 'repository.get_experiment_details'}) def get_experiment_href(experiment_details): if 'WSD_PLATFORM' in os.environ and os.environ['WSD_PLATFORM'] == 'True': raise WMLClientError(u'Experiment APIs are not supported for Watson Studio Desktop.') return Experiments.get_href(experiment_details)
[docs] @staticmethod @inherited_docstring(Functions.get_id) def get_function_id(function_details): return Functions.get_id(function_details)
[docs] @staticmethod @inherited_docstring(Functions.get_uid) def get_function_uid(function_details): return Functions.get_uid(function_details)
[docs] @staticmethod @inherited_docstring(Pipelines.get_uid) def get_pipeline_uid(pipeline_details): return Pipelines.get_uid(pipeline_details)
[docs] @staticmethod @inherited_docstring(Functions.get_href) def get_function_href(function_details): return Functions.get_href(function_details)
[docs] @staticmethod @inherited_docstring(Pipelines.get_href, {'pipelines.get_details': 'repository.get_pipeline_details'}) def get_pipeline_href(pipeline_details): return Pipelines.get_href(pipeline_details)
[docs] @staticmethod @inherited_docstring(Pipelines.get_id) def get_pipeline_id(pipeline_details): return Pipelines.get_id(pipeline_details)
[docs] @staticmethod @inherited_docstring(Spaces.get_uid, {'spaces.get_details': 'repository.get_space_details'}) def get_space_uid(space_details): if 'WSD_PLATFORM' in os.environ and os.environ['WSD_PLATFORM'] == 'True': raise WMLClientError(u'Spaces APIs are not supported for Watson Studio Desktop.') if Repository.cloud_platform_spaces or Repository.icp_platform_spaces: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return Spaces.get_uid(space_details)
[docs] @staticmethod @inherited_docstring(Spaces.get_member_uid, {'spaces.get_member_details': 'repository.get_member_details'}) def get_member_uid(member_details): if 'WSD_PLATFORM' in os.environ and os.environ['WSD_PLATFORM'] == 'True': raise WMLClientError(u'Spaces APIs are not supported for Watson Studio Desktop.') if Repository.cloud_platform_spaces or Repository.icp_platform_spaces: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return Spaces.get_member_uid(member_details)
[docs] @staticmethod @inherited_docstring(Spaces.get_href, {'spaces.get_details': 'repository.get_space_details'}) def get_space_href(space_details): if 'WSD_PLATFORM' in os.environ and os.environ['WSD_PLATFORM'] == 'True': raise WMLClientError(u'Spaces APIs are not supported for Watson Studio Desktop.') if Repository.cloud_platform_spaces or Repository.icp_platform_spaces: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return Spaces.get_href(space_details)
[docs] @staticmethod @inherited_docstring(Spaces.get_member_href, {'spaces.get_member_details': 'repository.get_member_details'}) def get_member_href(member_details): if 'WSD_PLATFORM' in os.environ and os.environ['WSD_PLATFORM'] == 'True': raise WMLClientError(u'Spaces APIs are not supported for Watson Studio Desktop.') if Repository.cloud_platform_spaces or Repository.icp_platform_spaces: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return Spaces.get_member_href(member_details)
[docs] def list(self, framework_filter: str = None, return_as_df: bool = True): """Print/get stored models, pipelines, runtimes, libraries, functions, spaces and experiments in a table/DataFrame format. If limit is set to None there will be only first 50 records shown. :param framework_filter: Get only frameworks with desired names :type framework_filter: str, optional :param return_as_df: Determinate if table should be returned as pandas.DataFrame object, default: True :type return_as_df: bool, optional :return: DataFrame with listed names and ids of stored models or None if return_as_df is False :rtype: pandas.DataFrame or None **Example** .. code-block:: python client.repository.list() client.repository.list(return_as_df=False) client.repository.list(framework_filter='prompt_tune') client.repository.list(framework_filter='prompt_tune', return_as_df=False) """ from tabulate import tabulate headers = self._client._get_headers() params = self._client._params() params.update({u'limit': 1000}) # params = {u'limit': 1000} # TODO - should be unlimited, if results not sorted isIcp = self._ICP endpoints = { u'model': self._client.service_instance._href_definitions.get_published_models_href(), u'experiment': self._client.service_instance._href_definitions.get_experiments_href(), u'pipeline': self._client.service_instance._href_definitions.get_pipelines_href(), u'function': self._client.service_instance._href_definitions.get_functions_href() } artifact_get = {} for artifact in endpoints: params = self._client._params() artifact_get[artifact] = get_url(endpoints[artifact], self._client._get_headers(), params, isIcp) resources = {artifact: [] for artifact in endpoints} for artifact in endpoints: try: response = artifact_get[artifact] response_text = self._handle_response(200, u'getting all {}s'.format(artifact), response) resources[artifact] = response_text[u'resources'] except Exception as e: self._logger.error(e) sw_spec_info = {s['id']: s for s in self._client.software_specifications.get_details(state_info=True)['resources']} def get_spec_info(spec_id, prop): if spec_id and spec_id in sw_spec_info: return sw_spec_info[spec_id].get(prop, '') else: return '' values = [] for t in endpoints.keys(): values += [ (m['metadata']['id'], m['metadata']['name'], m['metadata']['created_at'], m['entity']['type'] if t == 'model' else '-', t if t != 'function' else m['entity']['type'] + ' function', get_spec_info(m['entity'].get('software_spec', {}).get('id'), 'state'), get_spec_info(m['entity'].get('software_spec', {}).get('id'), 'replacement')) for m in resources[t]] columns = ['GUID', 'NAME', 'CREATED', 'FRAMEWORK', 'TYPE', 'SPEC_STATE', 'SPEC_REPLACEMENT'] table = DataFrame(data=values, columns=columns) table = table.sort_values(by=["CREATED"], ascending=False).reset_index(drop=True) if framework_filter: table = table[table['FRAMEWORK'].str.contains(framework_filter)] if return_as_df: return table[:_DEFAULT_LIST_LENGTH] print(tabulate(table, headers='keys')) if len(values) > _DEFAULT_LIST_LENGTH: print( 'Note: Only first {} records were displayed. To display more use more specific list functions.'.format( _DEFAULT_LIST_LENGTH))
[docs] @inherited_docstring(Models.list) def list_models(self, limit=None, asynchronous=False, get_all=False, return_as_df=True): return self._client._models.list(limit=limit, asynchronous=asynchronous, get_all=get_all, return_as_df=return_as_df)
[docs] @inherited_docstring(Experiments.list) def list_experiments(self, limit=None, return_as_df=True): if self._client.WSD: raise WMLClientError(u'Experiment APIs are not supported for Watson Studio Desktop.') return self._client.experiments.list(limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Spaces.list) def list_spaces(self, limit=None, return_as_df=True): if self._client.WSD: raise WMLClientError('list_spaces - Listing spaces is not supported for Watson Studio Desktop.') if Repository.cloud_platform_spaces or Repository.icp_platform_spaces: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return self._client.spaces.list(limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Functions.list) def list_functions(self, limit=None, return_as_df=True): return self._client._functions.list(limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Pipelines.list) def list_pipelines(self, limit=None, return_as_df=True): return self._client.pipelines.list(limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Spaces.list_members) def list_members(self, space_uid, limit=None, return_as_df=True): if self._client.WSD: raise WMLClientError('list_members - Listing members is not supported for Watson Studio Desktop.') if Repository.cloud_platform_spaces or Repository.icp_platform_spaces: raise WMLClientError(u"Not supported in this release. Use methods in 'client.spaces' instead") return self._client.spaces.list_members(space_uid=space_uid, limit=limit, return_as_df=return_as_df)
def _check_artifact_type(self, artifact_uid): Repository._validate_type(artifact_uid, u'artifact_uid', str, True) def _artifact_exists(response): return (response is not None) and (u'status_code' in dir(response)) and (response.status_code == 200) isIcp = self._ICP endpoints = { u'model': self._client.service_instance._href_definitions.get_model_last_version_href(artifact_uid), u'pipeline': self._client.service_instance._href_definitions.get_pipeline_href(artifact_uid), u'experiment': self._client.service_instance._href_definitions.get_experiment_href(artifact_uid), u'function': self._client.service_instance._href_definitions.get_function_href(artifact_uid) } artifact_get = {} for artifact in endpoints: params = self._client._params() artifact_get[artifact] = get_url(endpoints[artifact], self._client._get_headers(), params, isIcp) response_get = {artifact: None for artifact in endpoints} for artifact in endpoints: try: response_get[artifact] = artifact_get[artifact] self._logger.debug( u'Response({})[{}]: {}'.format(endpoints[artifact], response_get[artifact].status_code, response_get[artifact].text)) except Exception as e: self._logger.debug(u'Error during checking artifact type: ' + str(e)) artifact_type = {artifact: _artifact_exists(response_get[artifact]) for artifact in response_get} return artifact_type
[docs] def create_revision(self, artifact_uid): """Create revision for passed `artifact_uid`. :param artifact_uid: Unique id of stored model, experiment, function or pipelines :type artifact_uid: str :return: artifact new revision metadata :rtype: dict **Example** .. code-block:: python details = client.repository.create_revision(artifact_uid) """ Repository._validate_type(artifact_uid, u'artifact_uid', str, True) uid_type = self._check_artifact_type(artifact_uid) if uid_type[u'experiment'] is True: return self._client.experiments.create_revision(artifact_uid) if uid_type[u'pipeline'] is True: return self._client.pipelines.create_revision(artifact_uid) else: raise WMLClientError( u'Getting artifact details failed. Artifact uid: \'{}\' not found.'.format(artifact_uid)) return details
def _get_revision_details(self, artifact_uid): """Get metadata of stored artifacts revisions. :param artifact_uid: unique id of stored model or experiment or function or pipelines :type artifact_uid: str :return: stored artifacts metadata :rtype: dict **Example** .. code-block:: python details = client.repository.get_revision_details(artifact_uid) """ Repository._validate_type(artifact_uid, u'artifact_uid', str, True) uid_type = self._check_artifact_type(artifact_uid) if uid_type[u'experiment'] is True: details = self._client.experiments.get_revision_details(artifact_uid) if uid_type[u'pipeline'] is True: details = self._client.pipelines.get_revisions(artifact_uid) else: raise WMLClientError( u'Getting artifact details failed. Artifact uid: \'{}\' not found.'.format(artifact_uid)) return details
[docs] @inherited_docstring(Models.list_revisions) def list_models_revisions(self, model_uid, limit=None, return_as_df=True): return self._client._models.list_revisions(model_uid, limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Pipelines.list_revisions) def list_pipelines_revisions(self, pipeline_uid, limit=None, return_as_df=True): return self._client.pipelines.list_revisions(pipeline_uid, limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Functions.list_revisions) def list_functions_revisions(self, function_uid, limit=None, return_as_df=True): return self._client._functions.list_revisions(function_uid, limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Experiments.list_revisions) def list_experiments_revisions(self, experiment_uid, limit=None, return_as_df=True): return self._client.experiments.list_revisions(experiment_uid, limit=limit, return_as_df=return_as_df)
[docs] @inherited_docstring(Models.promote) def promote_model(self, model_id: str, source_project_id: str, target_space_id: str): # deprecated return self._client._models.promote(model_id, source_project_id, target_space_id)