genai.text.embedding.embedding_service module#
- pydantic model genai.text.embedding.embedding_service.BaseConfig[source]#
Bases:
BaseServiceConfig
- Config:
extra: str = forbid
validate_assignment: bool = True
validate_default: bool = True
- field create_execution_options: CreateExecutionOptions = CreateExecutionOptions(throw_on_error=True, ordered=True, concurrency_limit=None, callback=None)#
- pydantic model genai.text.embedding.embedding_service.BaseServices[source]#
Bases:
BaseServiceServices
- Config:
extra: str = forbid
validate_assignment: bool = True
validate_default: bool = True
- field LimitService: type[LimitService] = <class 'genai.text.embedding.limit.limit_service.LimitService'>#
- pydantic model genai.text.embedding.embedding_service.CreateExecutionOptions[source]#
Bases:
BaseModel
- field callback: Callable[[TextEmbeddingCreateResponse], None] | None = None#
Callback which is called everytime the response comes.
- field concurrency_limit: int | None = None#
Upper bound for concurrent executions (in case the passed value is higher than the API allows, the API’s limit will be used).
- Constraints:
ge = 1
- field ordered: bool = True#
Items will be yielded in the order they were passed in, although they may be processed on the server in different order.
- field throw_on_error: bool = True#
Flag indicating whether to throw an error if any error occurs during execution (if disabled, ‘None’ may be returned in case of error).
- class genai.text.embedding.embedding_service.EmbeddingService[source]#
Bases:
BaseService
[BaseConfig
,BaseServices
]- Config#
alias of
BaseConfig
- Services#
alias of
BaseServices
- __init__(*, api_client, services=None, config=None)[source]#
- Parameters:
api_client (ApiClient) –
services (BaseServices | None) –
config (BaseConfig | dict | None) –
- create(*, model_id, inputs, parameters=None, execution_options=None)[source]#
Creates embedding vectors from an input(s).
- Parameters:
model_id (str) – The ID of the model.
inputs (str | list[str]) – Text/texts to process. It is recommended not to leave any trailing spaces.
parameters (dict | TextEmbeddingParameters | None) – Parameters for embedding.
execution_options (dict | CreateExecutionOptions | None) – An optional configuration how SDK should work (error handling, limits, callbacks, …)
- Return type:
Generator[TextEmbeddingCreateResponse, None, None]
Example:
from genai import Client, Credentials from genai.text.chat import HumanMessage, TextGenerationParameters client = Client(credentials=Credentials.from_env()) responses = list( client.text.embedding.create( model_id="sentence-transformers/all-minilm-l6-v2", input="Write a tagline for an alumni association: Together we" ) ) print("Output vector", responses[0].results[0])
- Yields:
TextEmbeddingCreateResponse object.
- Raises:
ApiResponseException – In case of a known API error.
ApiNetworkException – In case of unhandled network error.
ValidationError – In case of provided parameters are invalid.
- Parameters:
model_id (str) –
inputs (str | list[str]) –
parameters (dict | TextEmbeddingParameters | None) –
execution_options (dict | CreateExecutionOptions | None) –
- Return type:
Generator[TextEmbeddingCreateResponse, None, None]