MachineIntelligenceCore:NeuralNets
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Friends Macros
mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double Class Reference

Test Fixture - layer of input size 4x4x1 and with filter bank of 3 filters of size 1x1 with stride 3, double. Math example taken from my own calculations;) More...

#include <Convolution_tests.hpp>

Inheritance diagram for mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double:
Collaboration diagram for mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double:

Public Member Functions

 Conv4x4x1Filter3x1x1s3Double ()
 

Protected Member Functions

virtual void SetUp ()
 

Private Attributes

mic::mlnn::convolution::Convolution
< double > 
layer
 Object to be tested. More...
 
mic::neural_nets::loss::SquaredErrorLoss
< double > 
loss
 
mic::types::MatrixPtr< double > x
 Test x - used in forward pass. More...
 
mic::types::MatrixPtr< double > desired_y
 Desired output for a given x. More...
 
mic::types::MatrixPtr< double > dy
 Gradient passed to backpropagation. More...
 
mic::types::MatrixPtr< double > desired_dx
 Target y values. More...
 
mic::types::MatrixPtr< double > desired_dW
 Desired gradient dW from backpropagation. More...
 
mic::types::MatrixPtr< double > desired_db
 Desired gradient db from backpropagation. More...
 

Detailed Description

Test Fixture - layer of input size 4x4x1 and with filter bank of 3 filters of size 1x1 with stride 3, double. Math example taken from my own calculations;)

Author
tkornuta

Definition at line 239 of file Convolution_tests.hpp.

Constructor & Destructor Documentation

mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::Conv4x4x1Filter3x1x1s3Double ( )
inline

Definition at line 242 of file Convolution_tests.hpp.

References desired_db, desired_dW, desired_dx, desired_y, dy, and x.

Member Function Documentation

virtual void mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::SetUp ( )
inlineprotectedvirtual

Definition at line 261 of file Convolution_tests.hpp.

References layer, and mic::mlnn::Layer< eT >::p.

Member Data Documentation

mic::types::MatrixPtr<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::desired_db
private

Desired gradient db from backpropagation.

Definition at line 306 of file Convolution_tests.hpp.

Referenced by Conv4x4x1Filter3x1x1s3Double().

mic::types::MatrixPtr<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::desired_dW
private

Desired gradient dW from backpropagation.

Definition at line 303 of file Convolution_tests.hpp.

Referenced by Conv4x4x1Filter3x1x1s3Double().

mic::types::MatrixPtr<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::desired_dx
private

Target y values.

Desired gradient dx from backpropagation.

Definition at line 300 of file Convolution_tests.hpp.

Referenced by Conv4x4x1Filter3x1x1s3Double().

mic::types::MatrixPtr<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::desired_y
private

Desired output for a given x.

Definition at line 291 of file Convolution_tests.hpp.

Referenced by Conv4x4x1Filter3x1x1s3Double().

mic::types::MatrixPtr<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::dy
private

Gradient passed to backpropagation.

Definition at line 294 of file Convolution_tests.hpp.

Referenced by Conv4x4x1Filter3x1x1s3Double().

mic::mlnn::convolution::Convolution<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::layer
private

Object to be tested.

Definition at line 282 of file Convolution_tests.hpp.

Referenced by SetUp().

mic::neural_nets::loss::SquaredErrorLoss<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::loss
private

Definition at line 285 of file Convolution_tests.hpp.

mic::types::MatrixPtr<double> mic::neural_nets::unit_tests::Conv4x4x1Filter3x1x1s3Double::x
private

Test x - used in forward pass.

Definition at line 288 of file Convolution_tests.hpp.

Referenced by Conv4x4x1Filter3x1x1s3Double().


The documentation for this class was generated from the following file: