MachineIntelligenceCore:NeuralNets
|
Class representing a squared error loss function (regression). L = 1/2 sum (t - p)^2. More...
#include <SquaredErrorLoss.hpp>
Public Member Functions | |
dtype | calculateLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
Function calculates squared difference loss (regression) and returns squared error (SE). More... | |
mic::types::MatrixPtr< dtype > | calculateGradient (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
Function calculating gradient - for squared difference (regression). More... | |
![]() | |
virtual dtype | calculateMeanLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression. More... | |
Class representing a squared error loss function (regression). L = 1/2 sum (t - p)^2.
dtype | Template parameter denoting precision of variables. |
Definition at line 41 of file SquaredErrorLoss.hpp.
|
inlinevirtual |
Function calculating gradient - for squared difference (regression).
Implements mic::neural_nets::loss::Loss< dtype >.
Definition at line 63 of file SquaredErrorLoss.hpp.
Referenced by TEST_F().
|
inlinevirtual |
Function calculates squared difference loss (regression) and returns squared error (SE).
Implements mic::neural_nets::loss::Loss< dtype >.
Definition at line 46 of file SquaredErrorLoss.hpp.
Referenced by TEST_F().