MachineIntelligenceCore:NeuralNets
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Friends Macros
mic::neural_nets::loss::SquaredErrorLoss< dtype > Class Template Reference

Class representing a squared error loss function (regression). L = 1/2 sum (t - p)^2. More...

#include <SquaredErrorLoss.hpp>

Inheritance diagram for mic::neural_nets::loss::SquaredErrorLoss< dtype >:
Collaboration diagram for mic::neural_nets::loss::SquaredErrorLoss< dtype >:

Public Member Functions

dtype calculateLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)
 Function calculates squared difference loss (regression) and returns squared error (SE). More...
 
mic::types::MatrixPtr< dtype > calculateGradient (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)
 Function calculating gradient - for squared difference (regression). More...
 
- Public Member Functions inherited from mic::neural_nets::loss::Loss< dtype >
virtual dtype calculateMeanLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)
 Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression. More...
 

Detailed Description

template<typename dtype = float>
class mic::neural_nets::loss::SquaredErrorLoss< dtype >

Class representing a squared error loss function (regression). L = 1/2 sum (t - p)^2.

Author
tkornuta
Template Parameters
dtypeTemplate parameter denoting precision of variables.

Definition at line 41 of file SquaredErrorLoss.hpp.

Member Function Documentation

template<typename dtype = float>
mic::types::MatrixPtr<dtype> mic::neural_nets::loss::SquaredErrorLoss< dtype >::calculateGradient ( mic::types::MatrixPtr< dtype >  target_y_,
mic::types::MatrixPtr< dtype >  predicted_y_ 
)
inlinevirtual

Function calculating gradient - for squared difference (regression).

Implements mic::neural_nets::loss::Loss< dtype >.

Definition at line 63 of file SquaredErrorLoss.hpp.

Referenced by TEST_F().

template<typename dtype = float>
dtype mic::neural_nets::loss::SquaredErrorLoss< dtype >::calculateLoss ( mic::types::MatrixPtr< dtype >  target_y_,
mic::types::MatrixPtr< dtype >  predicted_y_ 
)
inlinevirtual

Function calculates squared difference loss (regression) and returns squared error (SE).

Implements mic::neural_nets::loss::Loss< dtype >.

Definition at line 46 of file SquaredErrorLoss.hpp.

Referenced by TEST_F().


The documentation for this class was generated from the following file: