MachineIntelligenceCore:NeuralNets
|
Class representing a cross-entropy loss function (classification). More...
#include <CrossEntropyLoss.hpp>
Public Member Functions | |
dtype | calculateLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
Calculates cross entropy(using log) and returns cross-entropy error (CE). More... | |
mic::types::MatrixPtr< dtype > | calculateGradient (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
Gradient calculation for cross-entropy. More... | |
![]() | |
virtual dtype | calculateMeanLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression. More... | |
Class representing a cross-entropy loss function (classification).
dtype | Template parameter denoting precision of variables. |
Definition at line 43 of file CrossEntropyLoss.hpp.
|
inlinevirtual |
Gradient calculation for cross-entropy.
Implements mic::neural_nets::loss::Loss< dtype >.
Definition at line 68 of file CrossEntropyLoss.hpp.
Referenced by TEST_F().
|
inlinevirtual |
Calculates cross entropy(using log) and returns cross-entropy error (CE).
Implements mic::neural_nets::loss::Loss< dtype >.
Definition at line 48 of file CrossEntropyLoss.hpp.
Referenced by TEST_F().