MachineIntelligenceCore:NeuralNets
|
Abstract class representing a loss function. Defines interfaces. More...
#include <Loss.hpp>
Public Member Functions | |
virtual dtype | calculateLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)=0 |
Function calculating loss - abstract. More... | |
virtual dtype | calculateMeanLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression. More... | |
virtual mic::types::MatrixPtr < dtype > | calculateGradient (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)=0 |
Function calculating gradient - abstract. More... | |
Abstract class representing a loss function. Defines interfaces.
dtype | Template parameter denoting precision of variables. |
|
pure virtual |
Function calculating gradient - abstract.
Implemented in mic::neural_nets::loss::LogLikelihoodLoss< dtype >, mic::neural_nets::loss::CrossEntropyLoss< dtype >, mic::neural_nets::loss::SquaredErrorLoss< dtype >, mic::neural_nets::loss::SquaredErrorLoss< double >, and mic::neural_nets::loss::SquaredErrorLoss< float >.
|
pure virtual |
Function calculating loss - abstract.
Implemented in mic::neural_nets::loss::LogLikelihoodLoss< dtype >, mic::neural_nets::loss::CrossEntropyLoss< dtype >, mic::neural_nets::loss::SquaredErrorLoss< dtype >, mic::neural_nets::loss::SquaredErrorLoss< double >, and mic::neural_nets::loss::SquaredErrorLoss< float >.
Referenced by mic::neural_nets::loss::Loss< float >::calculateMeanLoss().
|
inlinevirtual |