MachineIntelligenceCore:NeuralNets
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Friends Macros
mic::neural_nets::loss::Loss< dtype > Class Template Referenceabstract

Abstract class representing a loss function. Defines interfaces. More...

#include <Loss.hpp>

Inheritance diagram for mic::neural_nets::loss::Loss< dtype >:

Public Member Functions

virtual dtype calculateLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)=0
 Function calculating loss - abstract. More...
 
virtual dtype calculateMeanLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)
 Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression. More...
 
virtual mic::types::MatrixPtr
< dtype > 
calculateGradient (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)=0
 Function calculating gradient - abstract. More...
 

Detailed Description

template<typename dtype = float>
class mic::neural_nets::loss::Loss< dtype >

Abstract class representing a loss function. Defines interfaces.

Author
tkornuta
Template Parameters
dtypeTemplate parameter denoting precision of variables.

Definition at line 41 of file Loss.hpp.

Member Function Documentation

template<typename dtype = float>
virtual mic::types::MatrixPtr<dtype> mic::neural_nets::loss::Loss< dtype >::calculateGradient ( mic::types::MatrixPtr< dtype >  target_y_,
mic::types::MatrixPtr< dtype >  predicted_y_ 
)
pure virtual
template<typename dtype = float>
virtual dtype mic::neural_nets::loss::Loss< dtype >::calculateLoss ( mic::types::MatrixPtr< dtype >  target_y_,
mic::types::MatrixPtr< dtype >  predicted_y_ 
)
pure virtual
template<typename dtype = float>
virtual dtype mic::neural_nets::loss::Loss< dtype >::calculateMeanLoss ( mic::types::MatrixPtr< dtype >  target_y_,
mic::types::MatrixPtr< dtype >  predicted_y_ 
)
inlinevirtual

Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression.

Definition at line 51 of file Loss.hpp.

Referenced by TEST_F().


The documentation for this class was generated from the following file: