MachineIntelligenceCore:NeuralNets
 All Classes Namespaces Files Functions Variables Enumerations Enumerator Friends Macros
mic::neural_nets::loss::LogLikelihoodLoss< dtype > Class Template Reference

Class representing a log-likelihood cost (to be used with softmax logistic regression). More...

#include <LogLikelihoodLoss.hpp>

Inheritance diagram for mic::neural_nets::loss::LogLikelihoodLoss< dtype >:
Collaboration diagram for mic::neural_nets::loss::LogLikelihoodLoss< dtype >:

Public Member Functions

dtype calculateLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)
 Calculates log-likelihood cost. More...
 
mic::types::MatrixPtr< dtype > calculateGradient (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)
 Gradient calculation for log-likelihood cost. NOT FINISHED!! More...
 
- Public Member Functions inherited from mic::neural_nets::loss::Loss< dtype >
virtual dtype calculateMeanLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_)
 Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression. More...
 

Detailed Description

template<typename dtype = float>
class mic::neural_nets::loss::LogLikelihoodLoss< dtype >

Class representing a log-likelihood cost (to be used with softmax logistic regression).

Author
tkornuta
Template Parameters
dtypeTemplate parameter denoting precision of variables.

Definition at line 46 of file LogLikelihoodLoss.hpp.

Member Function Documentation

template<typename dtype = float>
mic::types::MatrixPtr<dtype> mic::neural_nets::loss::LogLikelihoodLoss< dtype >::calculateGradient ( mic::types::MatrixPtr< dtype >  target_y_,
mic::types::MatrixPtr< dtype >  predicted_y_ 
)
inlinevirtual

Gradient calculation for log-likelihood cost. NOT FINISHED!!

Implements mic::neural_nets::loss::Loss< dtype >.

Definition at line 74 of file LogLikelihoodLoss.hpp.

template<typename dtype = float>
dtype mic::neural_nets::loss::LogLikelihoodLoss< dtype >::calculateLoss ( mic::types::MatrixPtr< dtype >  target_y_,
mic::types::MatrixPtr< dtype >  predicted_y_ 
)
inlinevirtual

Calculates log-likelihood cost.

Implements mic::neural_nets::loss::Loss< dtype >.

Definition at line 51 of file LogLikelihoodLoss.hpp.


The documentation for this class was generated from the following file: