|
MachineIntelligenceCore:NeuralNets
|
Class representing a log-likelihood cost (to be used with softmax logistic regression). More...
#include <LogLikelihoodLoss.hpp>


Public Member Functions | |
| dtype | calculateLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
| Calculates log-likelihood cost. More... | |
| mic::types::MatrixPtr< dtype > | calculateGradient (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
| Gradient calculation for log-likelihood cost. NOT FINISHED!! More... | |
Public Member Functions inherited from mic::neural_nets::loss::Loss< dtype > | |
| virtual dtype | calculateMeanLoss (mic::types::MatrixPtr< dtype > target_y_, mic::types::MatrixPtr< dtype > predicted_y_) |
| Calculates mean loss (i.e. divides the loss by the size of batch) - ACE for cross-entropy or MSE for regression. More... | |
Class representing a log-likelihood cost (to be used with softmax logistic regression).
| dtype | Template parameter denoting precision of variables. |
Definition at line 46 of file LogLikelihoodLoss.hpp.
|
inlinevirtual |
Gradient calculation for log-likelihood cost. NOT FINISHED!!
Implements mic::neural_nets::loss::Loss< dtype >.
Definition at line 74 of file LogLikelihoodLoss.hpp.
|
inlinevirtual |
Calculates log-likelihood cost.
Implements mic::neural_nets::loss::Loss< dtype >.
Definition at line 51 of file LogLikelihoodLoss.hpp.