MachineIntelligenceCore:NeuralNets
|
#include <Sigmoid.hpp>
Public Member Functions | |
Sigmoid (size_t size_, std::string name_="Sigmoid") | |
Sigmoid (size_t height_, size_t width_, size_t depth_, std::string name_="Sigmoid") | |
virtual | ~Sigmoid () |
void | forward (bool test=false) |
void | backward () |
virtual void | update (eT alpha_, eT decay_=0.0f) |
![]() | |
Layer (size_t input_height_, size_t input_width_, size_t input_depth_, size_t output_height_, size_t output_width_, size_t output_depth_, LayerTypes layer_type_, std::string name_="layer") | |
virtual | ~Layer () |
mic::types::MatrixPtr< eT > | forward (mic::types::MatrixPtr< eT > x_, bool test=false) |
mic::types::MatrixPtr< eT > | backward (mic::types::MatrixPtr< eT > dy_) |
virtual void | resizeBatch (size_t batch_size_) |
template<typename loss > | |
mic::types::MatrixPtr< eT > | calculateNumericalGradient (mic::types::MatrixPtr< eT > x_, mic::types::MatrixPtr< eT > target_y_, mic::types::MatrixPtr< eT > param_, loss loss_, eT delta_) |
virtual void | resetGrads () |
size_t | inputSize () |
Returns size (length) of inputs. More... | |
size_t | outputSize () |
Returns size (length) of outputs. More... | |
size_t | batchSize () |
Returns size (length) of (mini)batch. More... | |
const std::string | name () const |
Returns name of the layer. More... | |
mic::types::MatrixPtr< eT > | getParam (std::string name_) |
mic::types::MatrixPtr< eT > | getState (std::string name_) |
mic::types::MatrixPtr< eT > | getGradient (std::string name_) |
void | setState (std::string name_, mic::types::MatrixPtr< eT > mat_ptr_) |
template<typename omT > | |
void | setOptimization () |
const std::string | type () const |
virtual std::string | streamLayerParameters () |
mic::types::MatrixPtr< eT > | lazyReturnSampleFromBatch (mic::types::MatrixPtr< eT > batch_ptr_, mic::types::MatrixArray< eT > &array_, std::string id_, size_t sample_number_, size_t sample_size_) |
mic::types::MatrixPtr< eT > | lazyReturnInputSample (mic::types::MatrixPtr< eT > batch_ptr_, size_t sample_number_) |
mic::types::MatrixPtr< eT > | lazyReturnOutputSample (mic::types::MatrixPtr< eT > batch_ptr_, size_t sample_number_) |
mic::types::MatrixPtr< eT > | lazyReturnChannelFromSample (mic::types::MatrixPtr< eT > sample_ptr_, mic::types::MatrixArray< eT > &array_, std::string id_, size_t sample_number_, size_t channel_number_, size_t height_, size_t width_) |
mic::types::MatrixPtr< eT > | lazyReturnInputChannel (mic::types::MatrixPtr< eT > sample_ptr_, size_t sample_number_, size_t channel_number_) |
mic::types::MatrixPtr< eT > | lazyReturnOutputChannel (mic::types::MatrixPtr< eT > sample_ptr_, size_t sample_number_, size_t channel_number_) |
void | lazyAllocateMatrixVector (std::vector< std::shared_ptr< mic::types::Matrix< eT > > > &vector_, size_t vector_size_, size_t matrix_height_, size_t matrix_width_) |
virtual std::vector < std::shared_ptr < mic::types::Matrix< eT > > > & | getInputActivations () |
virtual std::vector < std::shared_ptr < mic::types::Matrix< eT > > > & | getInputGradientActivations () |
virtual std::vector < std::shared_ptr < mic::types::Matrix< eT > > > & | getOutputActivations () |
virtual std::vector < std::shared_ptr < mic::types::Matrix< eT > > > & | getOutputGradientActivations () |
Private Member Functions | |
Sigmoid () | |
Friends | |
template<typename tmp > | |
class | mic::mlnn::MultiLayerNeuralNetwork |
Additional Inherited Members | |
![]() | |
Layer () | |
![]() | |
size_t | input_height |
Height of the input (e.g. 28 for MNIST). More... | |
size_t | input_width |
Width of the input (e.g. 28 for MNIST). More... | |
size_t | input_depth |
Number of channels of the input (e.g. 3 for RGB images). More... | |
size_t | output_height |
Number of receptive fields in a single channel - vertical direction. More... | |
size_t | output_width |
Number of receptive fields in a single channel - horizontal direction. More... | |
size_t | output_depth |
Number of filters = number of output channels. More... | |
size_t | batch_size |
Size (length) of (mini)batch. More... | |
LayerTypes | layer_type |
Type of the layer. More... | |
std::string | layer_name |
Name (identifier of the type) of the layer. More... | |
mic::types::MatrixArray< eT > | s |
States - contains input [x] and output [y] matrices. More... | |
mic::types::MatrixArray< eT > | g |
Gradients - contains input [x] and output [y] matrices. More... | |
mic::types::MatrixArray< eT > | p |
Parameters - parameters of the layer, to be used by the derived classes. More... | |
mic::types::MatrixArray< eT > | m |
Memory - a list of temporal parameters, to be used by the derived classes. More... | |
mic::neural_nets::optimization::OptimizationArray < eT > | opt |
Array of optimization functions. More... | |
std::vector< std::shared_ptr < mic::types::Matrix< eT > > > | x_activations |
Vector containing activations of input neurons - used in visualization. More... | |
std::vector< std::shared_ptr < mic::types::Matrix< eT > > > | dx_activations |
Vector containing activations of gradients of inputs (dx) - used in visualization. More... | |
std::vector< std::shared_ptr < mic::types::Matrix< eT > > > | y_activations |
Vector containing activations of output neurons - used in visualization. More... | |
std::vector< std::shared_ptr < mic::types::Matrix< eT > > > | dy_activations |
Vector containing activations of gradients of outputs (dy) - used in visualization. More... | |
eT | Template parameter denoting precision of variables (float for calculations/double for testing). |
Definition at line 37 of file Sigmoid.hpp.
|
inline |
Creates a Sigmoid layer - reduced number of parameters.
size_ | Length of the input/output data. |
name_ | Name of the layer. |
Definition at line 44 of file Sigmoid.hpp.
|
inline |
Creates a Sigmoid layer.
height_ | Height of the input/output sample. |
width_ | Width of the input/output sample. |
depth_ | Depth of the input/output sample. |
name_ | Name of the layer. |
Definition at line 58 of file Sigmoid.hpp.
|
inlinevirtual |
Virtual destructor - empty.
Definition at line 70 of file Sigmoid.hpp.
|
inlineprivate |
Private constructor, used only during the serialization.
Definition at line 113 of file Sigmoid.hpp.
|
inlinevirtual |
Abstract method responsible for processing the gradients from outputs to inputs (i.e. in the opposite direction). To be overridden in the derived classes.
Implements mic::mlnn::Layer< eT >.
Definition at line 82 of file Sigmoid.hpp.
References mic::mlnn::Layer< eT >::g, and mic::mlnn::Layer< eT >::s.
|
inlinevirtual |
Abstract method responsible for processing the data from the inputs to outputs. To be overridden in the derived classes.
test | Test mode - used for dropout-alike regularization techniques. |
Implements mic::mlnn::Layer< eT >.
Definition at line 72 of file Sigmoid.hpp.
References mic::mlnn::Layer< eT >::s.
|
inlinevirtual |
Performs the update according to the calculated gradients and injected optimization method. Empty as this is a "const" layer.
alpha_ | Learning rate - passed to the optimization functions of all layers. |
decay_ | Weight decay rate (determining that the "unused/unupdated" weights will decay to 0) (DEFAULT=0.0 - no decay). |
Implements mic::mlnn::Layer< eT >.
Definition at line 99 of file Sigmoid.hpp.
|
friend |
Definition at line 108 of file Sigmoid.hpp.