23 #ifndef SRC_MLNN_SIGMOID_HPP_ 
   24 #define SRC_MLNN_SIGMOID_HPP_ 
   30 namespace activation_function {
 
   36 template <
typename eT=
float>
 
   44     Sigmoid(
size_t size_,std::string name_ = 
"Sigmoid") :
 
   58     Sigmoid(
size_t height_, 
size_t width_, 
size_t depth_,
 
   59             std::string name_ = 
"Sigmoid") :
 
   61                 height_, width_, depth_,
 
   74         eT* x = 
s[
'x']->data();
 
   75         eT* y = 
s[
'y']->data();
 
   77         for (
size_t i = 0; i < (size_t)
s[
'x']->rows() * 
s[
'x']->cols(); i++) {
 
   78             y[i] = 1.0f / (1.0f +::exp(-x[i])); 
 
   84         eT* gx = 
g[
'x']->data();
 
   85         eT* gy = 
g[
'y']->data();
 
   86         eT* y = 
s[
'y']->data();
 
   88         for (
size_t i = 0; i < (size_t)
g[
'x']->rows() * 
g[
'x']->cols(); i++) {
 
   90             gx[i] = gy[i]* (y[i] * (1.0 - y[i]));
 
   99     virtual void update(eT alpha_, eT decay_  = 0.0f) { };
 
Sigmoid(size_t height_, size_t width_, size_t depth_, std::string name_="Sigmoid")
 
Class representing a multi-layer neural network. 
 
LayerTypes
Enumeration of possible layer types. 
 
virtual void update(eT alpha_, eT decay_=0.0f)
 
mic::types::MatrixArray< eT > s
States - contains input [x] and output [y] matrices. 
 
mic::types::MatrixArray< eT > g
Gradients - contains input [x] and output [y] matrices. 
 
Sigmoid(size_t size_, std::string name_="Sigmoid")
 
void forward(bool test=false)
 
Contains a template class representing a layer.