44 namespace application {
 
   56 namespace applications {
 
   59         mlnn_filename(
"mlnn_filename", 
"mlnn.txt"),
 
   60         mlnn_save(
"mlnn_save", false),
 
   61         mlnn_load(
"mlnn_load", false)
 
   68     LOG(LINFO) << 
"Properties registered";
 
   88     VGL_MANAGER->initializeGLUT(argc, argv);
 
   91     w2d_input = 
new WindowMatrix2D(
"Input matrix", 0, 0, 256, 256);
 
   94     collector_ptr = std::make_shared < mic::utils::DataCollector<std::string, float> >( );
 
   96     collector_ptr->createContainer(
"training_loss",  mic::types::color_rgba(0, 0, 255, 180));
 
   97     collector_ptr->createContainer(
"test_loss",  mic::types::color_rgba(0, 255, 0, 180));
 
  100     w_chart = 
new WindowCollectorChart<float>(
"MNISTPatchReconstruction", 0, 310, 512, 256);
 
  106     LOG(LTRACE) << 
"MNISTClassificationSoftmaxApplication::initializePropertyDependentVariables";
 
  144         LOG(LINFO) << 
"Generated new neural network";
 
  156     (*input_image) = (*sample.data());
 
  160     mic::types::MatrixXfPtr encoded_patch (
new mic::types::MatrixXf(*sample.data()));
 
  172     (*reconstructed_image) = (*encoded_reconstruction);
 
  183     (*input_image) = (*sample.data());
 
  186     mic::types::MatrixXfPtr encoded_patch (
new mic::types::MatrixXf(*sample.data()));
 
  196     (*reconstructed_image) = (*decoded_reconstruction);
 
  222     LOG(LINFO)<< 
"Iteration = " << iteration;
 
mic::types::MatrixXfPtr reconstructed_image
Reconstructed image/matrix. 
 
bool save(std::string filename_)
 
mic::importers::MNISTPatchImporter * training_dataset_importer
Importer responsible for loading training dataset. 
 
mic::importers::MNISTPatchImporter * test_dataset_importer
Importer responsible for loading testing dataset. 
 
mic::types::MatrixXfPtr input_image
Input image/matrix. 
 
virtual void collectTestStatistics()
 
virtual bool performLearningStep()
 
WindowCollectorChart< float > * w_chart
Window for displaying chart with statistics. 
 
Class implementing a simple MNIST patch reconstruction with multi-layer neural net. 
 
virtual ~MNISTPatchReconstructionApplication()
 
virtual void populateTestStatistics()
 
MNISTPatchReconstructionApplication(std::string node_name_="mnist_patch_autoencoder_reconstruction")
 
virtual void initialize(int argc, char *argv[])
 
WindowMatrix2D * w2d_input
Window for displaying the input image. 
 
mic::types::MatrixPtr< eT > getPredictions()
 
void RegisterApplication(void)
Registers application. 
 
eT test(mic::types::MatrixPtr< eT > encoded_batch_, mic::types::MatrixPtr< eT > encoded_targets_)
 
mic::configuration::Property< bool > mlnn_load
Property: flag denoting whether the nn should be loaded from a file (at the initialization of the tas...
 
mic::configuration::Property< std::string > mlnn_filename
Property: name of the file to which the neural network will be serialized (or deserialized from)...
 
virtual void initializePropertyDependentVariables()
 
mic::configuration::Property< bool > mlnn_save
Property: flag denoting whether the nn should be saved to a file (after every episode end)...
 
BackpropagationNeuralNetwork< float > neural_net
Multi-layer neural network. 
 
eT train(mic::types::MatrixPtr< eT > encoded_batch_, mic::types::MatrixPtr< eT > encoded_targets_, eT learning_rate_, eT decay_=0.0f)
 
WindowMatrix2D * w2d_reconstruction
Window for displaying the reconstructed image. 
 
size_t patch_size
Size of the patch - copied from importers. 
 
mic::utils::DataCollectorPtr< std::string, float > collector_ptr
Data collector. 
 
void pushLayer(LayerType *layer_ptr_)
 
bool load(std::string filename_)