genai.extensions.langchain.embeddings module#
- pydantic model genai.extensions.langchain.embeddings.LangChainEmbeddingsInterface[source]#
Bases:
BaseModel
,Embeddings
Class representing the LangChainChatInterface for interacting with the LangChain chat API.
Example:
from genai import Client, Credentials from genai.extensions.langchain import LangChainEmbeddingsInterface from genai.text.embedding import TextEmbeddingParameters client = Client(credentials=Credentials.from_env()) embeddings = LangChainEmbeddingsInterface( client=client, model_id="sentence-transformers/all-minilm-l6-v2", parameters=TextEmbeddingParameters(truncate_input_tokens=True) ) embeddings.embed_query("Hello world!") embeddings.embed_documents(["First document", "Second document"])
- Config:
extra: str = forbid
protected_namespaces: tuple = ()
arbitrary_types_allowed: bool = True
- field execution_options: ModelLike[CreateExecutionOptions] | None = None#
- field model_id: str [Required]#
- field parameters: ModelLike[TextEmbeddingParameters] | None = None#
- async aembed_documents(texts)[source]#
Asynchronous Embed search documents
- Parameters:
texts (List[str]) –
- Return type:
list[list[float]]
- async aembed_query(text)[source]#
Asynchronous Embed query text.
- Parameters:
text (str) –
- Return type:
List[float]