Frontend
The frontend employs a single decorator for user functions
- functionfuse.workflow(func)[source]
The decorator to create a node of the DAG
- Parameters:
func (function) – A function that is placed in the DAG node.
- Returns:
a DAG node.
Nodes created with calls of decorated user functions have a method set_name:
- set_name(name)
Return a list of random ingredients as strings.
- Parameters:
name (str) – Name of the node to set.
- Returns:
The node that is named.
An example code:
from functionfuse import workflow
@workflow
def sum(a, b):
return a + b
@workflow
def multiply(a, b):
return a * b
a, b = 1, 1
a_plus_b = sum(a, b).set_name("node1")
a_plus_two_b = sum(a_plus_b, b).set_name("node2")
result_of_mult = multiply(a_plus_b, a_plus_two_b).set_name("node3")
The above code defines a graph with 3 nodes: node1, node2, node3:
The variables a_plus_b, a_plus_two_b, and result_of_mult contains references to the nodes.
To make stateful nodes, we apply @workflow decorator to classes. Nodes can be arguments of constructors and methods of decorated clasess:
from functionfuse import workflow
@workflow
class IncrementalSum:
def __init__(self, start):
self.start = start
def add(self, n):
self.start += n
return self.start
@workflow
def minus(a, b):
return a - b
one = minus(4, 3).set_name("four_minus_three")
incremental_sum = IncrementalSum(start = one).set_name("IncrementalSum")
two = minus(3, one).set_name("three_minus_one")
incremental_sum.add(two).set_name("one_plus_two")
incremental_sum.add(two).set_name("three_plus_two")
six = incremental_sum.add(one).set_name("five_plus_one")
result = minus(six, 2).set_name("six_minus_two")
The above code defines a graph with 7 nodes:
Note that edges between methods of the same class instance are generated automatically to produce a chain of sequentially called methods.
To run the DAG use one of the backends.