Working with TuneExperiment and PromptTuner

The TuneExperiment class is responsible for creating experiments and scheduling tunings. All experiment results are stored automatically in your chosen Cloud Object Storage (COS) for SaaS or in the cluster’s file system for Cloud Pak for Data. Then the TuneExperiment feature can fetch the results and provide them directly to you for further use.

Configure PromptTuner

For an TuneExperiment object initialization, you need authentication credentials (for examples, see Setup) and the project_id or the space_id.

Hint

You can copy the project_id from the Project’s Manage tab (Project -> Manage -> General -> Details).

from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes
from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials,
    project_id="7ac03029-8bdd-4d5f-a561-2c4fd1e40705"
)

prompt_tuner = experiment.prompt_tuner(
    name="prompt tuning name",
    task_id=experiment.Tasks.CLASSIFICATION,
    base_model=ModelTypes.FLAN_T5_XL,
    accumulate_steps=32,
    batch_size=16,
    learning_rate=0.2,
    max_input_tokens=256,
    max_output_tokens=2,
    num_epochs=6,
    tuning_type=experiment.PromptTuningTypes.PT,
    verbalizer="Extract the satisfaction from the comment. Return simple '1' for satisfied customer or '0' for unsatisfied. Input: {{input}} Output: ",
    auto_update_model=True
)

Get configuration parameters

To see the current configuration parameters, call the get_params() method.

config_parameters = prompt_tuner.get_params()
print(config_parameters)
{
    'base_model': {'model_id': 'google/flan-t5-xl'},
    'accumulate_steps': 32,
    'batch_size': 16,
    'learning_rate': 0.2,
    'max_input_tokens': 256,
    'max_output_tokens': 2,
    'num_epochs': 6,
    'task_id': 'classification',
    'tuning_type': 'prompt_tuning',
    'verbalizer': "Extract the satisfaction from the comment. Return simple '1' for satisfied customer or '0' for unsatisfied. Input: {{input}} Output: ",
    'name': 'prompt tuning name',
    'description': 'Prompt tuning with SDK',
    'auto_update_model': True
}

Run prompt tuning

To schedule a tuning experiment, call the run() method, which will trigger a training process. The run() method can be synchronous (background_mode=False) or asynchronous (background_mode=True). If you don’t want to wait for the training to end, invoke the async version. It immediately returns only run details.

from ibm_watsonx_ai.helpers import DataConnection, ContainerLocation, S3Location

tuning_details = prompt_tuner.run(
    training_data_references=[DataConnection(
        connection_asset_id=connection_id,
        location=S3Location(
            bucket='prompt_tuning_data',
            path='pt_train_data.json'
        )
    )],
    background_mode=False)

# OR

tuning_details = prompt_tuner.run(
    training_data_references=[DataConnection(
        data_asset_id='5d99c11a-2060-4ef6-83d5-dc593c6455e2')
    ],
    background_mode=True)

# OR

tuning_details = prompt_tuner.run(
    training_data_references=[DataConnection(
        location=ContainerLocation("path_to_file.json"))
    ],
    background_mode=True)

Get run status, get run details

If you use the run() method asynchronously, you can monitor the run details and status by using the following two methods:

status = prompt_tuner.get_run_status()
print(status)
'running'

# OR

'completed'

run_details = prompt_tuner.get_run_details()
print(run_details)
{
    'metadata': {'created_at': '2023-10-12T12:01:40.662Z',
    'description': 'Prompt tuning with SDK',
    'id': 'b3bc33b3-cb3f-49e7-9fb3-88c6c4d4f8d7',
    'modified_at': '2023-10-12T12:09:42.810Z',
    'name': 'prompt tuning name',
    'project_id': 'efa68764-5ec2-410a-bad9-982c502fbf4e',
    'tags': ['prompt_tuning',
    'wx_prompt_tune.3c06a0db-3cb9-478c-9421-eaf05276a1b7']},
    'entity': {'auto_update_model': True,
    'description': 'Prompt tuning with SDK',
    'model_id': 'd854752e-76a7-4c6d-b7db-5f84dd11e827',
    'name': 'prompt tuning name',
    'project_id': 'efa68764-5ec2-410a-bad9-982c502fbf4e',
    'prompt_tuning': {'accumulate_steps': 32,
    'base_model': {'model_id': 'google/flan-t5-xl'},
    'batch_size': 16,
    'init_method': 'random',
    'learning_rate': 0.2,
    'max_input_tokens': 256,
    'max_output_tokens': 2,
    'num_epochs': 6,
    'num_virtual_tokens': 100,
    'task_id': 'classification',
    'tuning_type': 'prompt_tuning',
    'verbalizer': "Extract the satisfaction from the comment. Return simple '1' for satisfied customer or '0' for unsatisfied. Input: {{input}} Output: "},
    'results_reference': {'connection': {},
    'location': {'path': 'default_tuning_output',
        'training': 'default_tuning_output/b3bc33b3-cb3f-49e7-9fb3-88c6c4d4f8d7',
        'training_status': 'default_tuning_output/b3bc33b3-cb3f-49e7-9fb3-88c6c4d4f8d7/training-status.json',
        'model_request_path': 'default_tuning_output/b3bc33b3-cb3f-49e7-9fb3-88c6c4d4f8d7/assets/b3bc33b3-cb3f-49e7-9fb3-88c6c4d4f8d7/resources/wml_model/request.json',
        'assets_path': 'default_tuning_output/b3bc33b3-cb3f-49e7-9fb3-88c6c4d4f8d7/assets'},
    'type': 'container'},
    'status': {'completed_at': '2023-10-12T12:09:42.769Z', 'state': 'completed'},
    'tags': ['prompt_tuning'],
    'training_data_references': [{'connection': {},
        'location': {'href': '/v2/assets/90258b10-5590-4d4c-be75-5eeeccf09076',
        'id': '90258b10-5590-4d4c-be75-5eeeccf09076'},
        'type': 'data_asset'}]}
}

Get data connections

The data_connections list contains all the training connections that you referenced while calling the run() method.

data_connections = prompt_tuner.get_data_connections()

# Get data in binary format
binary_data = data_connections[0].read(binary=True)

Summary

You can see details of models in the form of a summary table. The output type is a pandas.DataFrame with model names, enhancements, the base model, an auto update option, the number of epochs used, and the last loss function value.

results = prompt_tuner.summary()
print(results)

#                           Enhancements            Base model  ...         loss
#        Model Name
#  Prompt_tuned_M_1      [prompt_tuning]     google/flan-t5-xl  ...     0.449197

Plot learning curves

Note

Available only for Jupyter notebooks.

To see graphically how the tuning was performed, you can view learning curve graphs.

prompt_tuner.plot_learning_curve()
_images/learning_curves.png

Get the model identifier

Note

The model identifier will be available only if the tuning was scheduled first and the auto_update_model parameter was set as True, which is the default value.

To get the model_id, call the get_model_id method.

model_id = prompt_tuner.get_model_id()
print(model_id)
'd854752e-76a7-4c6d-b7db-5f84dd11e827'

The model_id obtained in this way can be used to create deployments and then create ModelInference. For more information, see the next section: Tuned Model Inference.