Tune Experiment

TuneExperiment

class ibm_watsonx_ai.experiment.fm_tune.TuneExperiment(credentials, project_id=None, space_id=None, verify=None)[source]

Bases: BaseExperiment

The TuneExperiment class for tuning models with prompts.

Parameters:
  • credentials (Credentials or dict) – credentials for the Watson Machine Learning instance

  • project_id (str, optional) – ID of the Watson Studio project

  • space_id (str, optional) – ID of the Watson Studio space

  • verify (bool or str, optional) –

    You can pass one of following as verify:

    • the path to a CA_BUNDLE file

    • the path of directory with certificates of trusted CAs

    • True - default path to truststore will be taken

    • False - no verification will be made

Example:

from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(
    credentials=Credentials(...),
    project_id="...",
    space_id="...")
fine_tuner(name, task_id, base_model=None, description=None, num_epochs=None, learning_rate=None, batch_size=None, max_seq_length=None, accumulate_steps=None, verbalizer=None, response_template=None, gpu=None, auto_update_model=True, group_by_name=False)[source]

Initialize a FineTuner module.

Parameters:
  • name (str) – name for the FineTuner

  • base_model (str) – model id of the base model for this fine-tuning.

  • task_id (str) – task that is targeted for this model.

  • description (str, optional) – description

  • num_epochs (int, optional) – number of epochs to tune the fine vectors, this affects the quality of the trained model. Possible values: 1 ≤ value ≤ 50, default value: 20

  • learning_rate (float, optional) – learning rate to be used while tuning prompt vectors. Possible values: 0.01 ≤ value ≤ 0.5, default value: 0.3

  • batch_size (int, optional) – The batch size is a number of samples processed before the model is updated. Possible values: 1 ≤ value ≤ 16, default value: 16

  • max_seq_length (int, optional)

  • accumulate_steps (int, optional) – Number of steps to be used for gradient accumulation. Gradient accumulation refers to a method of collecting gradient for configured number of steps instead of updating the model variables at every step and then applying the update to model variables. This can be used as a tool to overcome smaller batch size limitation. Often also referred in conjunction with “effective batch size”. Possible values: 1 ≤ value ≤ 128, default value: 16

  • verbalizer (str, optional) – Verbalizer template to be used for formatting data at train and inference time.

  • response_template (str, optional) – Separator for the prediction/response in the single sequence to train on completions only.

  • gpu (dict, optional) – The name and number of GPUs used for the FineTuning job.

  • auto_update_model (bool, optional) – define if model should be automatically updated, default value: True

  • group_by_name (bool, optional) – define if tunings should be grouped by name, default value: False

Examples

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(...)

prompt_tuner = experiment.fine_tuner(
    name="fine-tuning name",
    base_model='bigscience/bloom-560m',
    task_id="generation",
    num_epochs=3,
    learning_rate=0.2,
    batch_size=5,
    max_seq_length=1024,
    accumulate_steps=5,
    verbalizer='### Input: {{input}} \n\n### Response: {{output}}',
    response_template='\n### Response:',
    auto_update_model=False)
prompt_tuner(name, task_id, description=None, base_model=None, accumulate_steps=None, batch_size=None, init_method=None, init_text=None, learning_rate=None, max_input_tokens=None, max_output_tokens=None, num_epochs=None, verbalizer=None, tuning_type=None, auto_update_model=True, group_by_name=False)[source]

Initialize a PromptTuner module.

Parameters:
  • name (str) – name for the PromptTuner

  • task_id (str) –

    task that is targeted for this model. Example: experiment.Tasks.CLASSIFICATION

    Possible values:

    • experiment.Tasks.CLASSIFICATION: ‘classification’ (default)

    • experiment.Tasks.QUESTION_ANSWERING: ‘question_answering’

    • experiment.Tasks.SUMMARIZATION: ‘summarization’

    • experiment.Tasks.RETRIEVAL_AUGMENTED_GENERATION: ‘retrieval_augmented_generation’

    • experiment.Tasks.GENERATION: ‘generation’

    • experiment.Tasks.CODE_GENERATION_AND_CONVERSION: ‘code’

    • experiment.Tasks.EXTRACTION: ‘extraction

  • description (str, optional) – description

  • base_model (str, optional) – model ID of the base model for this prompt tuning. Example: google/flan-t5-xl

  • accumulate_steps (int, optional) – Number of steps to be used for gradient accumulation. Gradient accumulation refers to the method of collecting gradient for a configured number of steps instead of updating the model variables at every step and then applying the update to model variables. This can be used as a tool to overcome smaller batch size limitation. Often also referred in conjunction with “effective batch size”. Possible values: 1 ≤ value ≤ 128, default value: 16

  • batch_size (int, optional) – The batch size is the number of samples processed before the model is updated. Possible values: 1 ≤ value ≤ 16, default value: 16

  • init_method (str, optional) – text method requires init_text to be set. Allowable values: [random, text], default value: random

  • init_text (str, optional) – initialization text to be used if init_method is set to text, otherwise this will be ignored.

  • learning_rate (float, optional) – learning rate to be used while tuning prompt vectors. Possible values: 0.01 ≤ value ≤ 0.5, default value: 0.3

  • max_input_tokens (int, optional) – maximum length of input tokens being considered. Possible values: 1 ≤ value ≤ 256, default value: 256

  • max_output_tokens (int, optional) – maximum length of output tokens being predicted. Possible values: 1 ≤ value ≤ 128 default value: 128

  • num_epochs (int, optional) – number of epochs to tune the prompt vectors, this affects the quality of the trained model. Possible values: 1 ≤ value ≤ 50, default value: 20

  • verbalizer (str, optional) – verbalizer template to be used for formatting data at train and inference time. This template may use brackets to indicate where fields from the data model must be rendered. The default value is “{{input}}” which means use the raw text, default value: Input: {{input}} Output:

  • tuning_type (str, optional) – type of Peft (Parameter-Efficient Fine-Tuning) config to build. Allowable values: [experiment.PromptTuningTypes.PT], default value: experiment.PromptTuningTypes.PT

  • auto_update_model (bool, optional) – define if model should be automatically updated, default value: True

  • group_by_name (bool, optional) – define if tunings should be grouped by name, default value: False

Examples

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(...)

prompt_tuner = experiment.prompt_tuner(
    name="prompt tuning name",
    task_id=experiment.Tasks.CLASSIFICATION,
    base_model='google/flan-t5-xl',
    accumulate_steps=32,
    batch_size=16,
    learning_rate=0.2,
    max_input_tokens=256,
    max_output_tokens=2,
    num_epochs=6,
    tuning_type=experiment.PromptTuningTypes.PT,
    verbalizer="Extract the satisfaction from the comment. Return simple '1' for satisfied customer or '0' for unsatisfied. Input: {{input}} Output: ",
    auto_update_model=True)
runs(*, filter)[source]

Get historical tuning runs with the name filter.

Parameters:

filter (str) – filter, choose which runs specifying the tuning name to fetch

Examples

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(...)
experiment.runs(filter='prompt tuning name').list()

Tune Runs

class ibm_watsonx_ai.experiment.fm_tune.TuneRuns(client, filter=None, limit=50)[source]

Bases: object

The TuneRuns class is used to work with historical PromptTuner and FineTuner runs.

Parameters:
  • client (APIClient) – APIClient to handle service operations

  • filter (str, optional) – filter, choose which runs specifying the tuning name to fetch

  • limit (int) – int number of records to be returned

get_run_details(run_id=None, include_metrics=False)[source]

Get run details. If run_id is not supplied, the last run will be taken.

Parameters:
  • run_id (str, optional) – ID of the run

  • include_metrics (bool, optional) – indicates to include metrics in the training details output

Returns:

configuration parameters of the run

Return type:

dict

Example:

from ibm_watsonx_ai.experiment import TuneExperiment
experiment = TuneExperiment(credentials, ...)

experiment.runs.get_run_details(run_id='02bab973-ae83-4283-9d73-87b9fd462d35')
experiment.runs.get_run_details()
get_tuner(run_id)[source]

Create an instance of PromptTuner or FineTuner based on a tuning run with a specific run_id.

Parameters:

run_id (str) – ID of the run

Returns:

prompt tuner | fine tuner object

Return type:

PromptTuner | FineTuner class instance

Example:

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials, ...)
historical_tuner = experiment.runs.get_tuner(run_id='02bab973-ae83-4283-9d73-87b9fd462d35')
list()[source]

Lists historical runs with their status. If you have a lot of runs stored in the service, it might take a longer time to fetch all the information. If there is no limit set, it gets the last 50 records.

Returns:

Pandas DataFrame with run IDs and status

Return type:

pandas.DataFrame

Examples

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(...)
df = experiment.runs.list()

Prompt Tuner

class ibm_watsonx_ai.foundation_models.PromptTuner(name, task_id, *, description=None, base_model=None, accumulate_steps=None, batch_size=None, init_method=None, init_text=None, learning_rate=None, max_input_tokens=None, max_output_tokens=None, num_epochs=None, verbalizer=None, tuning_type=None, auto_update_model=True, group_by_name=None)[source]

Bases: BaseTuner

cancel_run(hard_delete=False)[source]

Cancel or delete a Prompt Tuning run.

Parameters:

hard_delete (bool, optional) – if True, the completed or cancelled prompt tuning run is deleted, if False, the current run is canceled. Default: False

get_data_connections()[source]
Create DataConnection objects for further usage

(eg. to handle data storage connection).

Returns:

list of DataConnections

Return type:

list[‘DataConnection’]

Example:

from ibm_watsonx_ai.experiment import TuneExperiment
experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)
prompt_tuner.run(...)

data_connections = prompt_tuner.get_data_connections()
get_model_id()[source]

Get the model ID.

Example:

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)
prompt_tuner.run(...)

prompt_tuner.get_model_id()
get_params()[source]

Get configuration parameters of PromptTuner.

Returns:

PromptTuner parameters

Return type:

dict

Example:

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)

prompt_tuner.get_params()

# Result:
#
# {'base_model': {'name': 'google/flan-t5-xl'},
#  'task_id': 'summarization',
#  'name': 'Prompt Tuning of Flan T5 model',
#  'auto_update_model': False,
#  'group_by_name': False}
get_run_details(include_metrics=False)[source]

Get details of a prompt tuning run.

Parameters:

include_metrics (bool, optional) – indicates to include metrics in the training details output

Returns:

details of the prompt tuning

Return type:

dict

Example:

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)
prompt_tuner.run(...)

prompt_tuner.get_run_details()
get_run_status()[source]

Check the status/state of an initialized prompt tuning run if it was run in background mode.

Returns:

status of the Prompt Tuning run

Return type:

str

Example:

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)
prompt_tuner.run(...)

prompt_tuner.get_run_details()

# Result:
# 'completed'
plot_learning_curve()[source]

Plot learning curves.

Note

Available only for Jupyter notebooks.

Example:

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)
prompt_tuner.run(...)

prompt_tuner.plot_learning_curve()
run(training_data_references, training_results_reference=None, background_mode=False)[source]

Run a prompt tuning process of a foundation model on top of the training data referenced by DataConnection.

Parameters:
  • training_data_references (list[DataConnection]) – data storage connection details to inform where the training data is stored

  • training_results_reference (DataConnection, optional) – data storage connection details to store pipeline training results

  • background_mode (bool, optional) – indicator if the fit() method will run in the background, async or sync

Returns:

run details

Return type:

dict

Example:

from ibm_watsonx_ai.experiment import TuneExperiment
from ibm_watsonx_ai.helpers import DataConnection, S3Location

experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)

prompt_tuner.run(
    training_data_references=[DataConnection(
        connection_asset_id=connection_id,
        location=S3Location(
            bucket='prompt_tuning_data',
            path='pt_train_data.json')
        )
    )]
    background_mode=False)
summary(scoring='loss')[source]

Print the details of PromptTuner models (prompt-tuned models).

Parameters:

scoring (string, optional) – scoring metric for sorting pipelines, when not provided, uses loss one

Returns:

computed models and metrics

Return type:

pandas.DataFrame

Example:

from ibm_watsonx_ai.experiment import TuneExperiment

experiment = TuneExperiment(credentials, ...)
prompt_tuner = experiment.prompt_tuner(...)
prompt_tuner.run(...)

prompt_tuner.summary()

# Result:
#                          Enhancements            Base model  ...         loss
#       Model Name
# Prompt_tuned_M_1      [prompt_tuning]     google/flan-t5-xl  ...     0.449197

Enums

class ibm_watsonx_ai.foundation_models.utils.enums.PromptTuningTypes[source]

Bases: object

PT = 'prompt_tuning'
class ibm_watsonx_ai.foundation_models.utils.enums.PromptTuningInitMethods[source]

Bases: object

Supported methods for prompt initialization in prompt tuning.

RANDOM = 'random'
TEXT = 'text'
class ibm_watsonx_ai.foundation_models.utils.enums.TuneExperimentTasks(value)[source]

Bases: Enum

An enumeration.

CLASSIFICATION = 'classification'
CODE_GENERATION_AND_CONVERSION = 'code'
EXTRACTION = 'extraction'
GENERATION = 'generation'
QUESTION_ANSWERING = 'question_answering'
RETRIEVAL_AUGMENTED_GENERATION = 'retrieval_augmented_generation'
SUMMARIZATION = 'summarization'
class PromptTunableModels

Bases: StrEnum

This represents a dynamically generated Enum for Prompt Tunable Models.

Example of getting PromptTunableModels:

# GET PromptTunableModels ENUM
client.foundation_models.PromptTunableModels

# PRINT dict of Enums
client.foundation_models.PromptTunableModels.show()

Example Output:

{'FLAN_T5_XL': 'google/flan-t5-xl',
'GRANITE_13B_INSTRUCT_V2': 'ibm/granite-13b-instruct-v2',
'LLAMA_2_13B_CHAT': 'meta-llama/llama-2-13b-chat'}