Parameter Scheme¶
- class ibm_watsonx_ai.foundation_models.schema.BaseSchema[source]¶
Bases:
object
Chat Parameters¶
- class ibm_watsonx_ai.foundation_models.schema.TextChatParameters(frequency_penalty: float | None = None, logprobs: bool | None = None, top_logprobs: int | None = None, presence_penalty: float | None = None, response_format: dict | ibm_watsonx_ai.foundation_models.schema._api.TextChatResponseFormat | None = None, temperature: float | None = None, max_tokens: int | None = None, time_limit: int | None = None, top_p: float | None = None, n: int | None = None)[source]¶
Bases:
BaseSchema
- frequency_penalty = None¶
- logprobs = None¶
- max_tokens = None¶
- n = None¶
- presence_penalty = None¶
- response_format = None¶
- temperature = None¶
- time_limit = None¶
- top_logprobs = None¶
- top_p = None¶
- class ibm_watsonx_ai.foundation_models.schema.TextChatResponseFormat(type: str | ibm_watsonx_ai.foundation_models.schema._api.TextChatResponseFormatType | None = None)[source]¶
Bases:
BaseSchema
- type = None¶
Generate Parameters¶
- class ibm_watsonx_ai.foundation_models.schema.TextGenParameters(decoding_method: str | ibm_watsonx_ai.foundation_models.schema._api.TextGenDecodingMethod | None = None, length_penalty: dict | ibm_watsonx_ai.foundation_models.schema._api.TextGenLengthPenalty | None = None, temperature: float | None = None, top_p: float | None = None, top_k: int | None = None, random_seed: int | None = None, repetition_penalty: float | None = None, min_new_tokens: int | None = None, max_new_tokens: int | None = None, stop_sequences: list[str] | None = None, time_limit: int | None = None, truncate_input_tokens: int | None = None, return_options: dict | ibm_watsonx_ai.foundation_models.schema._api.ReturnOptionProperties | None = None, include_stop_sequence: bool | None = None, prompt_variables: dict | None = None)[source]¶
Bases:
BaseSchema
- decoding_method = None¶
- include_stop_sequence = None¶
- length_penalty = None¶
- max_new_tokens = None¶
- min_new_tokens = None¶
- prompt_variables = None¶
- random_seed = None¶
- repetition_penalty = None¶
- return_options = None¶
- stop_sequences = None¶
- temperature = None¶
- time_limit = None¶
- top_k = None¶
- top_p = None¶
- truncate_input_tokens = None¶
- class ibm_watsonx_ai.foundation_models.schema.ReturnOptionProperties(input_text: bool | None = None, generated_tokens: bool | None = None, input_tokens: bool | None = None, token_logprobs: bool | None = None, token_ranks: bool | None = None, top_n_tokens: bool | None = None)[source]¶
Bases:
BaseSchema
- generated_tokens = None¶
- input_text = None¶
- input_tokens = None¶
- token_logprobs = None¶
- token_ranks = None¶
- top_n_tokens = None¶
Rerank Parameters¶
- class ibm_watsonx_ai.foundation_models.schema.RerankParameters(truncate_input_tokens: int | None = None, return_options: dict | ibm_watsonx_ai.foundation_models.schema._api.RerankReturnOptions | None = None)[source]¶
Bases:
BaseSchema
- return_options = None¶
- truncate_input_tokens = None¶
TSModelInference Parameters¶
- class ibm_watsonx_ai.foundation_models.schema.TSForecastParameters(timestamp_column, prediction_length=None, id_columns=None, freq=None, target_columns=None, observable_columns=None, control_columns=None, conditional_columns=None, static_categorical_columns=None)[source]¶
Bases:
BaseSchema
- Parameters:
timestamp_column (str) – A valid column in the data that should be treated as the timestamp. if using calendar dates (simple integer time offsets are also allowed), users should consider using a format such as ISO 8601 that includes a UTC offset (e.g., ‘2024-10-18T01:09:21.454746+00:00’). This will avoid potential issues such as duplicate dates appearing due to daylight savings change overs. There are many date formats in existence and inferring the correct one can be a challenge so please do consider adhering to ISO 8601.
prediction_length (int, optional) – The prediction length for the forecast. The service will return this many periods beyond the last timestamp in the inference data payload. If specified, prediction_length must be an integer >=1 and no more than the model default prediction length. When omitted the model default prediction_length will be used.
id_columns (list[str], optional) – Columns that define a unique key for time series. This is similar to a compound primary key in a database table.
freq (str, optional) – A freqency indicator for the given timestamp_column. See https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#period-aliases for a description of the allowed values. If not provided, we will attempt to infer it from the data. Possible values: 0 ≤ length ≤ 100, Value must match regular expression ^d+(B|D|W|M|Q|Y|h|min|s|ms|us|ns)$|^s*$
target_columns (list[str], optional) – An array of column headings which constitute the target variables. These are the data that will be forecasted.
- conditional_columns = None¶
- control_columns = None¶
- freq = None¶
- id_columns = None¶
- observable_columns = None¶
- prediction_length = None¶
- static_categorical_columns = None¶
- target_columns = None¶
- timestamp_column¶