Source code for ibm_watsonx_ai.deployment.batch

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2023-2024.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------

from __future__ import annotations

import io
import os
import time
from typing import TYPE_CHECKING, Any, cast

import pandas as pd
from pandas import DataFrame

from .base_deployment import BaseDeployment
from ..helpers import DataConnection, AssetLocation
from ..utils import StatusLogger, print_text_header_h1
from ..utils.autoai.connection import (
    validate_source_data_connections,
    validate_deployment_output_connection,
)
from ..utils.autoai.utils import convert_dataframe_to_fields_values_payload
from ..utils.autoai.errors import NoneDataConnection
from ..utils.deployment.errors import BatchJobFailed, MissingScoringResults
from ..wml_client_error import WMLClientError

if TYPE_CHECKING:
    from sklearn.pipeline import Pipeline
    from pandas import DataFrame
    from numpy import ndarray
    from ..workspace import WorkSpace
    from ..credentials import Credentials

__all__ = ["Batch"]


[docs] class Batch(BaseDeployment): """The Batch Deployment class. With this class object, you can manage any batch deployment. :param source_instance_credentials: credentials to the instance where the training was performed :type source_instance_credentials: dict :param source_project_id: ID of the Watson Studio project where the training was performed :type source_project_id: str, optional :param source_space_id: ID of the Watson Studio Space where the training was performed :type source_space_id: str, optional :param target_instance_credentials: credentials to the instance where you want to deploy :type target_instance_credentials: dict :param target_project_id: ID of the Watson Studio project where you want to deploy :type target_project_id: str, optional :param target_space_id: ID of the Watson Studio Space where you want to deploy :type target_space_id: str, optional """ def __init__( self, source_instance_credentials: Credentials | WorkSpace | None = None, source_project_id: str | None = None, source_space_id: str | None = None, target_instance_credentials: Credentials | WorkSpace | None = None, target_project_id: str | None = None, target_space_id: str | None = None, project_id: str | None = None, space_id: str | None = None, **kwargs: Any, ): super().__init__( deployment_type="batch", source_wml_credentials=kwargs.get("source_wml_credentials"), source_project_id=source_project_id, source_space_id=source_space_id, target_wml_credentials=kwargs.get("target_wml_credentials"), target_project_id=target_project_id, target_space_id=target_space_id, project_id=project_id, space_id=space_id, source_instance_credentials=source_instance_credentials, target_instance_credentials=target_instance_credentials, ) self.name = None self.id = None self.asset_id: str | None = None def __repr__(self) -> str: return f"name: {self.name}, id: {self.id}, asset_id: {self.asset_id}" def __str__(self) -> str: return f"name: {self.name}, id: {self.id}, asset_id: {self.asset_id}"
[docs] def score(self, **kwargs: Any) -> dict: raise NotImplementedError("Batch deployment supports only job runs.")
[docs] def create( # type: ignore[override] self, model: str, deployment_name: str, metadata: dict | None = None, training_data: DataFrame | ndarray | None = None, training_target: DataFrame | ndarray | None = None, experiment_run_id: str | None = None, hardware_spec: str | None = None, ) -> None: """Create a deployment from a model. :param model: name of the AutoAI model :type model: str :param deployment_name: name of the deployment :type deployment_name: str :param training_data: training data for the model :type training_data: pandas.DataFrame or numpy.ndarray, optional :param training_target: target/label data for the model :type training_target: pandas.DataFrame or numpy.ndarray, optional :param metadata: meta properties of the model :type metadata: dict, optional :param experiment_run_id: ID of a training/experiment (only applicable for AutoAI deployments) :type experiment_run_id: str, optional :param hardware_spec: hardware specification name of the deployment :type hardware_spec: str, optional **Example:** .. code-block:: python from ibm_watsonx_ai.deployment import Batch deployment = Batch( source_instance_credentials=Credentials(...), source_project_id="...", target_space_id="...") deployment.create( experiment_run_id="...", model=model, deployment_name='My new deployment' hardware_spec='L' ) """ return super().create( model=model, deployment_name=deployment_name, metadata=metadata, training_data=training_data, training_target=training_target, experiment_run_id=experiment_run_id, deployment_type="batch", hardware_spec=hardware_spec, )
[docs] @BaseDeployment._project_to_space_to_project def get_params(self) -> dict: """Get deployment parameters.""" return super().get_params()
[docs] @BaseDeployment._project_to_space_to_project def run_job( self, payload: ( DataFrame | list[DataConnection] | dict[str, DataFrame] | dict[str, DataConnection] ) = pd.DataFrame(), output_data_reference: DataConnection | None = None, transaction_id: str | None = None, background_mode: bool = True, hardware_spec: str | None = None, ) -> dict | DataConnection: """Batch scoring job. Payload or Payload data reference is required. Passed to the Service where the model has been deployed. :param payload: DataFrame that contains data to test the model or data storage connection details that inform the model where the payload data is stored :type payload: pandas.DataFrame or List[DataConnection] or Dict :param output_data_reference: DataConnection to the output COS for storing predictions, required only when DataConnections are used as a payload :type output_data_reference: DataConnection, optional :param transaction_id: ID under which the records should be saved in the payload table in IBM OpenScale :type transaction_id: str, optional :param background_mode: indicator whether the score() method will run in the background (async) or (sync) :type background_mode: bool, optional :param hardware_spec: hardware specification name for the scoring job :type hardware_spec: str, optional :return: details of the scoring job :rtype: dict **Examples** .. code-block:: python score_details = batch_service.run_job(payload=test_data) print(score_details['entity']['scoring']) # Result: # {'input_data': [{'fields': ['sepal_length', # 'sepal_width', # 'petal_length', # 'petal_width'], # 'values': [[4.9, 3.0, 1.4, 0.2]]}], # 'predictions': [{'fields': ['prediction', 'probability'], # 'values': [['setosa', # [0.9999320742502246, # 5.1519823540224506e-05, # 1.6405926235405522e-05]]]}] payload_reference = DataConnection(location=DSLocation(asset_id=asset_id)) score_details = batch_service.run_job(payload=payload_reference, output_data_filename = "scoring_output.csv") score_details = batch_service.run_job(payload={'observations': payload_reference}) score_details = batch_service.run_job(payload=[payload_reference]) score_details = batch_service.run_job(payload={'observations': payload_reference, 'supporting_features': supporting_features_reference}) # supporting features time series forecasting sceanrio score_details = batch_service.run_job(payload=test_df, hardware_spec='S') score_details = batch_service.run_job(payload=test_df, hardware_spec=TShirtSize.L) """ self._target_workspace: WorkSpace input_data: list[DataConnection] | list[dict] scoring_payload: dict if isinstance(payload, dict): observations = payload.get("observations", pd.DataFrame()) supporting_features = payload.get("supporting_features") if isinstance(observations, DataFrame) and ( isinstance(supporting_features, DataFrame) or supporting_features is None ): observations_payload = convert_dataframe_to_fields_values_payload( observations, return_values_only=True ) observations_payload["id"] = "observations" input_data = [observations_payload] if supporting_features is not None: supporting_features_payload = ( convert_dataframe_to_fields_values_payload( supporting_features, return_values_only=True ) ) supporting_features_payload["id"] = "supporting_features" input_data.append(supporting_features_payload) scoring_payload = { self._target_workspace.api_client.deployments.ScoringMetaNames.INPUT_DATA: input_data } elif isinstance(observations, DataConnection) and ( isinstance(supporting_features, DataConnection) or supporting_features is None ): observations.id = "observations" input_data = [observations] if supporting_features is not None: supporting_features.id = "supporting_features" input_data.append(supporting_features) for data_conn in input_data: if hasattr(data_conn, "location") and isinstance( data_conn.location, AssetLocation ): data_conn.location.api_client = ( self._target_workspace.api_client ) input_data = validate_source_data_connections( source_data_connections=input_data, workspace=self._target_workspace, deployment=True, ) input_data = [ data_connection._to_dict() for data_connection in input_data ] if output_data_reference is None: raise ValueError('"output_data_reference" should be provided.') if isinstance(output_data_reference, DataConnection): # api_client sets correct href for Data Assets if hasattr(output_data_reference, "location") and isinstance( output_data_reference.location, AssetLocation ): output_data_reference.location.api_client = ( self._target_workspace.api_client ) input_data = cast(list[DataConnection], input_data) output_data_reference = validate_deployment_output_connection( results_data_connection=output_data_reference, workspace=self._target_workspace, source_data_connections=input_data, ) output_data_reference = output_data_reference._to_dict() # type: ignore[assignment] input_data = cast(list[dict], input_data) scoring_payload = { self._target_workspace.api_client.deployments.ScoringMetaNames.INPUT_DATA_REFERENCES: input_data, self._target_workspace.api_client.deployments.ScoringMetaNames.OUTPUT_DATA_REFERENCE: output_data_reference, } else: raise TypeError( "Missing data observations in payload or observations " "or supporting_features are not pandas.DataFrames." ) # note: support for DataFrame payload elif isinstance(payload, DataFrame): scoring_payload = { self._target_workspace.api_client.deployments.ScoringMetaNames.INPUT_DATA: [ {"values": payload} ] } # note: support for DataConnections and dictionaries payload elif isinstance(payload, list): if isinstance(payload[0], DataConnection): if None in payload: raise NoneDataConnection("payload") # api_client sets correct href for Data Assets for data_conn in payload: if hasattr(data_conn, "location") and isinstance( data_conn.location, AssetLocation ): data_conn.location.api_client = ( self._target_workspace.api_client ) payload = [ new_conn for conn in payload for new_conn in conn._subdivide_connection() ] payload = validate_source_data_connections( source_data_connections=payload, workspace=self._target_workspace, deployment=True, ) payload = [data_connection._to_dict() for data_connection in payload] # type: ignore[assignment] elif isinstance(payload[0], dict): pass else: raise ValueError( f"Current payload type: list of {type(payload[0])} is not supported." ) if output_data_reference is None: raise ValueError('"output_data_reference" should be provided.') if isinstance(output_data_reference, DataConnection): # api_client sets correct href for Data Assets if hasattr(output_data_reference, "location") and isinstance( output_data_reference.location, AssetLocation ): output_data_reference.location.api_client = ( self._target_workspace.api_client ) output_data_reference = validate_deployment_output_connection( results_data_connection=output_data_reference, workspace=self._target_workspace, source_data_connections=payload, ) output_data_reference = output_data_reference._to_dict() # type: ignore[assignment] scoring_payload = { self._target_workspace.api_client.deployments.ScoringMetaNames.INPUT_DATA_REFERENCES: payload, self._target_workspace.api_client.deployments.ScoringMetaNames.OUTPUT_DATA_REFERENCE: output_data_reference, } else: raise ValueError( f"Incorrect payload type. Required: DataFrame or List[DataConnection], Passed: {type(payload)}" ) if hardware_spec: hw_spec = [ { "node_runtime_id": "auto_ai.kb", "hardware_spec": {"name": hardware_spec.upper()}, } ] else: # default details = self._target_workspace.api_client.deployments.get_details(self.id) hw_spec = details.get("entity", {}).get("hybrid_pipeline_hardware_specs") scoring_payload["hybrid_pipeline_hardware_specs"] = hw_spec self.id = cast(str, self.id) job_details = self._target_workspace.api_client.deployments.create_job( self.id, scoring_payload, _asset_id=self.asset_id ) job_details = cast(dict, job_details) if background_mode: return job_details else: # note: monitor scoring job job_id = self._target_workspace.api_client.deployments.get_job_id( job_details ) print_text_header_h1( "Synchronous scoring for id: '{}' started".format(job_id) ) status = self.get_job_status(job_id)["state"] with StatusLogger(status) as status_logger: while status not in ["failed", "error", "completed", "canceled"]: time.sleep(10) status = self.get_job_status(job_id)["state"] status_logger.log_state(status) # --- end note if "completed" in status: print("\nScoring job '{}' finished successfully.".format(job_id)) else: raise BatchJobFailed( job_id, f"Scoring job failed with status: {self.get_job_status(job_id)}", ) return self.get_job_params(job_id)
[docs] @BaseDeployment._project_to_space_to_project def rerun_job( self, scoring_job_id: str, background_mode: bool = True ) -> dict | DataFrame | DataConnection: """Rerun scoring job with the same parameters as job described by `scoring_job_id`. :param scoring_job_id: ID of the described scoring job :type scoring_job_id: str :param background_mode: indicator whether the score_rerun() method will run in the background (async) or (sync) :type background_mode: bool, optional :return: details of the scoring job :rtype: dict **Example:** .. code-block:: python scoring_details = deployment.score_rerun(scoring_job_id) """ scoring_params = self.get_job_params(scoring_job_id)["entity"]["scoring"] input_data_references = ( self._target_workspace.api_client.deployments.ScoringMetaNames.INPUT_DATA_REFERENCES ) output_data_reference = ( self._target_workspace.api_client.deployments.ScoringMetaNames.OUTPUT_DATA_REFERENCE ) if input_data_references in scoring_params: payload_ref = [ input_ref for input_ref in scoring_params[input_data_references] ] if "href" in scoring_params[output_data_reference]["location"]: del scoring_params[output_data_reference]["location"]["href"] return self.run_job( payload=payload_ref, output_data_reference=scoring_params["output_data_reference"], background_mode=background_mode, ) else: raise NotImplementedError( "'rerun_job' method supports only jobs with " "payload passed as a list of DataConnections. If you want to rerun job " "with payload passed directly, please use 'run_job' one more time." )
[docs] @BaseDeployment._project_to_space_to_project def delete(self, deployment_id: str | None = None) -> None: """Delete a deployment. :param deployment_id: ID of the deployment to be deleted, if empty, current deployment will be deleted :type deployment_id: str, optional **Example:** .. code-block:: python deployment = Batch(workspace=...) # Delete current deployment deployment.delete() # Or delete a specific deployment deployment.delete(deployment_id='...') """ super().delete(deployment_id=deployment_id, deployment_type="batch")
[docs] @BaseDeployment._project_to_space_to_project def list(self, limit: int | None = None) -> DataFrame: """List deployments. :param limit: set the limit for number of listed deployments, default is `None` (all deployments should be fetched) :type limit: int, optional :return: Pandas DataFrame with information about deployments :rtype: pandas.DataFrame **Example:** .. code-block:: python deployment = Batch(workspace=...) deployments_list = deployment.list() print(deployments_list) # Result: # created_at ... status # 0 2020-03-06T10:50:49.401Z ... ready # 1 2020-03-06T13:16:09.789Z ... ready # 4 2020-03-11T14:46:36.035Z ... failed # 3 2020-03-11T14:49:55.052Z ... failed # 2 2020-03-11T15:13:53.708Z ... ready """ return super().list(limit=limit, deployment_type="batch")
[docs] @BaseDeployment._project_to_space_to_project def get(self, deployment_id: str) -> None: """Get a deployment. :param deployment_id: ID of the deployment :type deployment_id: str **Example:** .. code-block:: python deployment = Batch(workspace=...) deployment.get(deployment_id="...") """ super().get(deployment_id=deployment_id, deployment_type="batch")
[docs] @BaseDeployment._project_to_space_to_project def get_job_params(self, scoring_job_id: str | None = None) -> dict: """Get batch deployment job parameters. :param scoring_job_id: ID of the scoring job :type scoring_job_id: str :return: parameters of the scoring job :rtype: dict """ return self._target_workspace.api_client.deployments.get_job_details( scoring_job_id )
[docs] @BaseDeployment._project_to_space_to_project def get_job_status(self, scoring_job_id: str) -> dict: """Get the status of a scoring job. :param scoring_job_id: ID of the scoring job :type scoring_job_id: str :return: dictionary with state of the scoring job (one of: [completed, failed, starting, queued]) and additional details if they exist :rtype: dict """ return self._target_workspace.api_client.deployments.get_job_status( scoring_job_id )
[docs] @BaseDeployment._project_to_space_to_project def get_job_result(self, scoring_job_id: str) -> DataFrame: """Get batch deployment results of a scoring job. :param scoring_job_id: ID of the scoring job :type scoring_job_id: str :return: batch deployment results of the scoring job :rtype: pandas.DataFrame :raises MissingScoringResults: in case of incompleted or failed job `MissingScoringResults` scoring exception is raised """ scoring_params = self.get_job_params(scoring_job_id)["entity"]["scoring"] if scoring_params["status"]["state"] == "completed": if "predictions" in scoring_params: data = DataFrame( scoring_params["predictions"][0]["values"], columns=scoring_params["predictions"][0]["fields"], ) return data else: conn = DataConnection._from_dict( scoring_params["output_data_reference"] ) conn._api_client = self._target_workspace.api_client return conn.read( raw=True ) # if in future output may be excel file or with custom separator, here it should be recognized else: raise MissingScoringResults( scoring_job_id, reason="Scoring is not completed." )
[docs] @BaseDeployment._project_to_space_to_project def get_job_id(self, batch_scoring_details: dict) -> str: """Get the ID from batch scoring details.""" return self._target_workspace.api_client.deployments.get_job_id( batch_scoring_details )
[docs] @BaseDeployment._project_to_space_to_project def list_jobs(self) -> DataFrame: """Returns pandas DataFrame with a list of deployment jobs""" resources = self._target_workspace.api_client.deployments.get_job_details()[ "resources" ] columns = ["job id", "state", "creted", "deployment id"] values = [] for scoring_details in resources: if "scoring" in scoring_details["entity"]: state = scoring_details["entity"]["scoring"]["status"]["state"] score_values = ( scoring_details["metadata"]["id"], state, scoring_details["metadata"]["created_at"], scoring_details["entity"]["deployment"]["id"], ) if self.id: if self.id == scoring_details["entity"]["deployment"]["id"]: values.append(score_values) else: values.append(score_values) return DataFrame(values, columns=columns)
@BaseDeployment._project_to_space_to_project def _deploy( self, pipeline_model: Pipeline, deployment_name: str, meta_props: dict, serving_name: ( str | None ) = None, # Not used, but added to match unified parameters for _deploy result_client: str | None = None, hardware_spec: str | None = None, ) -> dict: # Not used, but added to match unified parameters for _deploy """Deploy a model into the Service. :param pipeline_model: model of the pipeline :type pipeline_model: Pipeline or str :param deployment_name: name of the deployment :type deployment_name: str :param meta_props: meta properties of the model :type meta_props: dict :param result_client: tuple with a Result DataConnection object and an initialized COS client :type result_client: tuple[DataConnection, resource] :param hardware_spec: hardware specification for deployment :type hardware_spec: str, optional """ deployment_details: dict | None = {} deployment_props: dict[str, Any] asset_uid = self._publish_model( pipeline_model=pipeline_model, meta_props=meta_props ) self.asset_id = asset_uid deployment_props = { self._target_workspace.api_client.deployments.ConfigurationMetaNames.NAME: deployment_name, self._target_workspace.api_client.deployments.ConfigurationMetaNames.BATCH: {}, } deployment_props[ self._target_workspace.api_client.deployments.ConfigurationMetaNames.ASSET ] = {"id": asset_uid} deployment_props[ self._target_workspace.api_client.deployments.ConfigurationMetaNames.HYBRID_PIPELINE_HARDWARE_SPECS ] = [ { "node_runtime_id": "auto_ai.kb", "hardware_spec": { "name": hardware_spec.upper() if hardware_spec else "M" }, } ] print("Deploying model {} using V4 client.".format(asset_uid)) try: deployment_details = self._target_workspace.api_client.deployments.create( artifact_uid=asset_uid, # type: ignore[arg-type] meta_props=deployment_props, ) deployment_details = cast(dict, deployment_details) self.deployment_id = self._target_workspace.api_client.deployments.get_id( deployment_details ) except WMLClientError as e: raise e return deployment_details