Source code for ibm_watsonx_ai.deployment.web_service

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2023-2025.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------
from __future__ import annotations

from typing import TYPE_CHECKING, Any, cast

import pandas as pd
from pandas import DataFrame

from .base_deployment import BaseDeployment
from ..wml_client_error import WMLClientError

if TYPE_CHECKING:
    from sklearn.pipeline import Pipeline
    from numpy import ndarray
    from ..workspace import WorkSpace
    from ..credentials import Credentials
    from ibm_watsonx_ai.helpers.connections import DataConnection
    from ibm_boto3 import resource

__all__ = ["WebService"]


[docs] class WebService(BaseDeployment): """WebService is an Online Deployment class. With this class object, you can manage any online (WebService) deployment. :param source_instance_credentials: credentials to the instance where the training was performed :type source_instance_credentials: dict :param source_project_id: ID of the Watson Studio project where the training was performed :type source_project_id: str, optional :param source_space_id: ID of the Watson Studio Space where the training was performed :type source_space_id: str, optional :param target_instance_credentials: credentials to the instance where you want to deploy :type target_instance_credentials: dict :param target_project_id: ID of the Watson Studio project where you want to deploy :type target_project_id: str, optional :param target_space_id: ID of the Watson Studio Space where you want to deploy :type target_space_id: str, optional """ def __init__( self, source_instance_credentials: Credentials | WorkSpace | None = None, source_project_id: str | None = None, source_space_id: str | None = None, target_instance_credentials: Credentials | WorkSpace | None = None, target_project_id: str | None = None, target_space_id: str | None = None, project_id: str | None = None, space_id: str | None = None, **kwargs: Any, ): super().__init__( deployment_type="online", source_wml_credentials=kwargs.get("source_wml_credentials"), source_project_id=source_project_id, source_space_id=source_space_id, target_wml_credentials=kwargs.get("target_wml_credentials"), target_project_id=target_project_id, target_space_id=target_space_id, project_id=project_id, space_id=space_id, source_instance_credentials=source_instance_credentials, target_instance_credentials=target_instance_credentials, ) self.name: str | None = None self.scoring_url: str | None = None self.id: str | None = None self.asset_id: str | None = None def __repr__(self) -> str: return f"name: {self.name}, id: {self.id}, scoring_url: {self.scoring_url}, asset_id: {self.asset_id}" def __str__(self) -> str: return f"name: {self.name}, id: {self.id}, scoring_url: {self.scoring_url}, asset_id: {self.asset_id}"
[docs] def create( # type: ignore[override] self, model: str, deployment_name: str, serving_name: str | None = None, metadata: dict | None = None, training_data: DataFrame | ndarray | None = None, training_target: DataFrame | ndarray | None = None, experiment_run_id: str | None = None, hardware_spec: dict | None = None, ) -> None: """Create a deployment from a model. :param model: name of the AutoAI model :type model: str :param deployment_name: name of the deployment :type deployment_name: str :param training_data: training data for the model :type training_data: pandas.DataFrame or numpy.ndarray, optional :param training_target: target/label data for the model :type training_target: pandas.DataFrame or numpy.ndarray, optional :param serving_name: serving name of the deployment :type serving_name: str, optional :param metadata: meta properties of the model :type metadata: dict, optional :param experiment_run_id: ID of a training/experiment (only applicable for AutoAI deployments) :type experiment_run_id: str, optional :param hardware_spec: hardware specification for the deployment :type hardware_spec: dict, optional **Example:** .. code-block:: python from ibm_watsonx_ai.deployment import WebService from ibm_watsonx_ai import Credentials deployment = WebService( source_instance_credentials=Credentials(...), source_project_id="...", target_space_id="...") deployment.create( experiment_run_id="...", model=model, deployment_name='My new deployment', serving_name='my_new_deployment' ) """ return super().create( model=model, deployment_name=deployment_name, metadata=metadata, serving_name=serving_name, training_data=training_data, training_target=training_target, experiment_run_id=experiment_run_id, deployment_type="online", hardware_spec=hardware_spec, )
[docs] @BaseDeployment._project_to_space_to_project def get_params(self) -> dict: """Get deployment parameters.""" return super().get_params()
[docs] @BaseDeployment._project_to_space_to_project def score( self, payload: dict | DataFrame = pd.DataFrame(), *, forecast_window: int | None = None, transaction_id: str | None = None, ) -> dict: """Online scoring. Payload is passed to the Service scoring endpoint where the model has been deployed. :param payload: DataFrame with data to test the model or dictionary with keys `observations` and `supporting_features`, and DataFrames with data for `observations` and `supporting_features` to score forecasting models :type payload: pandas.DataFrame or dict :param forecast_window: size of forecast window, supported only for forcasting, supported for CPD 5.0 and later :type forecast_window: int, optional :param transaction_id: ID under which the records should be saved in the payload table in IBM OpenScale :type transaction_id: str, optional :return: dictionary with list of model output/predicted targets :rtype: dict **Examples** .. code-block:: python predictions = web_service.score(payload=test_data) print(predictions) # Result: # {'predictions': # [{ # 'fields': ['prediction', 'probability'], # 'values': [['no', [0.9221385608558003, 0.07786143914419975]], # ['no', [0.9798324002736079, 0.020167599726392187]] # }]} predictions = web_service.score(payload={'observations': new_observations_df}) predictions = web_service.score(payload={'observations': new_observations_df, 'supporting_features': supporting_features_df}) # supporting features time series forecasting scenario predictions = web_service.score(payload={'observations': new_observations_df} forecast_window=1000) # forecast_window time series forecasting scenario """ return super().score( payload=payload, forecast_window=forecast_window, transaction_id=transaction_id, )
[docs] @BaseDeployment._project_to_space_to_project def delete(self, deployment_id: str | None = None) -> None: """Delete a deployment. :param deployment_id: ID of the deployment to be deleted, if empty, current deployment will be deleted :type deployment_id: str, optional **Example:** .. code-block:: python deployment = WebService(workspace=...) # Delete current deployment deployment.delete() # Or delete a specific deployment deployment.delete(deployment_id='...') """ super().delete(deployment_id=deployment_id, deployment_type="online")
[docs] @BaseDeployment._project_to_space_to_project def list(self, limit: int | None = None) -> DataFrame: """List deployments. :param limit: set the limit for number of listed deployments, default is `None` (all deployments should be fetched) :type limit: int, optional :return: Pandas DataFrame with information about deployments :rtype: pandas.DataFrame **Example:** .. code-block:: python deployment = WebService(workspace=...) deployments_list = deployment.list() print(deployments_list) # Result: # created_at ... status # 0 2020-03-06T10:50:49.401Z ... ready # 1 2020-03-06T13:16:09.789Z ... ready # 4 2020-03-11T14:46:36.035Z ... failed # 3 2020-03-11T14:49:55.052Z ... failed # 2 2020-03-11T15:13:53.708Z ... ready """ return super().list(limit=limit, deployment_type="online")
[docs] @BaseDeployment._project_to_space_to_project def get(self, deployment_id: str) -> None: """Get a deployment. :param deployment_id: ID of the deployment :type deployment_id: str **Example:** .. code-block:: python deployment = WebService(workspace=...) deployment.get(deployment_id="...") """ super().get(deployment_id=deployment_id, deployment_type="online")
@BaseDeployment._project_to_space_to_project def _deploy( self, pipeline_model: Pipeline, deployment_name: str, meta_props: dict, serving_name: str | None = None, result_client: tuple[DataConnection, resource] | None = None, hardware_spec: str | None = None, ) -> dict: """Deploy model into Service. :param pipeline_model: model of the pipeline to deploy :type pipeline_model: Pipeline or str :param deployment_name: name of the deployment :type deployment_name: str :param meta_props: meta properties of the model :type meta_props: dict :param serving_name: serving name of the deployment :type serving_name: str, optional :param result_client: tuple with a Result DataConnection object and an initialized COS client :rtype: tuple[DataConnection, resource] :return: details of the deployment :rtype: dict """ from ..workspace import WorkSpace self._target_workspace = cast(WorkSpace, self._target_workspace) deployment_details: dict | None deployment_props: dict[str, Any] asset_uid = self._publish_model( pipeline_model=pipeline_model, meta_props=meta_props ) self.asset_id = asset_uid conf_names = ( self._target_workspace.api_client.deployments.ConfigurationMetaNames ) deployment_props = {conf_names.NAME: deployment_name, conf_names.ONLINE: {}} if hardware_spec: deployment_props[conf_names.HARDWARE_SPEC] = hardware_spec if serving_name: deployment_props[conf_names.ONLINE]["parameters"] = { conf_names.SERVING_NAME: serving_name } print("Deploying model {} using V4 client.".format(asset_uid)) try: deployment_details = self._target_workspace.api_client.deployments.create( artifact_uid=asset_uid, # type: ignore[arg-type] meta_props=deployment_props, ) deployment_details = cast(dict, deployment_details) self.deployment_id = self._target_workspace.api_client.deployments.get_id( deployment_details ) except WMLClientError as e: raise e return deployment_details