# -----------------------------------------------------------------------------------------
# (C) Copyright IBM Corp. 2024-2025.
# https://opensource.org/licenses/BSD-3-Clause
# -----------------------------------------------------------------------------------------
from typing import Literal, Sequence, Any, Iterable
from langchain.text_splitter import TextSplitter
from langchain_core.documents import Document
from ibm_watsonx_ai.utils import DisableWarningsLogger
from .base_chunker import BaseChunker
__all__ = [
"LangChainChunker",
]
[docs]
class LangChainChunker(BaseChunker[Document]):
"""
Wrapper for LangChain TextSplitter.
:param method: describes the type of TextSplitter as the main instance performing the chunking, defaults to "recursive"
:type method: Literal["recursive", "character", "token"], optional
:param chunk_size: maximum size of a single chunk that is returned, defaults to 4000
:type chunk_size: int, optional
:param chunk_overlap: overlap in characters between chunks, defaults to 200
:type chunk_overlap: int, optional
:param encoding_name: encoding used in the TokenTextSplitter, defaults to "gpt2"
:type encoding_name: str, optional
:param model_name: model used in the TokenTextSplitter
:type model_name: str, optional
.. code-block:: python
from ibm_watsonx_ai.foundation_models.extensions.rag.chunker import LangChainChunker
text_splitter = LangChainChunker(
method="recursive",
chunk_size=1000,
chunk_overlap=200
)
chunks_ids = []
for i, document in enumerate(data_loader):
chunks = text_splitter.split_documents([document])
chunks_ids.append(vector_store.add_documents(chunks, batch_size=300))
"""
supported_methods = ("recursive", "character", "token")
def __init__(
self,
method: Literal["recursive", "character", "token"] = "recursive",
chunk_size: int = 4000,
chunk_overlap: int = 200,
encoding_name: str = "gpt2",
model_name: str | None = None,
**kwargs: Any,
) -> None:
self.method = method
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.encoding_name = encoding_name
self.model_name = model_name
self.separators = kwargs.pop("separators", ["\n\n", "(?<=\. )", "\n", " ", ""])
self._text_splitter = self._get_text_splitter()
def __eq__(self, other: object) -> bool:
if isinstance(other, LangChainChunker):
return self.to_dict() == other.to_dict()
else:
return NotImplemented
def _get_text_splitter(self) -> TextSplitter:
"""Create an instance of TextSplitter based on the settings."""
text_splitter: TextSplitter
match self.method:
case "recursive":
from langchain.text_splitter import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
separators=self.separators,
length_function=len,
add_start_index=True,
)
case "character":
from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
add_start_index=True,
)
case "token":
from langchain.text_splitter import TokenTextSplitter
text_splitter = TokenTextSplitter(
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
encoding_name=self.encoding_name,
model_name=self.model_name,
add_start_index=True,
)
case _:
raise ValueError(
"Chunker method '{}' is not supported. Use one of {}".format(
self.method, self.supported_methods
)
)
return text_splitter
[docs]
def to_dict(self) -> dict[str, Any]:
"""
Return dictionary that can be used to recreate an instance of the LangChainChunker.
"""
params = (
"method",
"chunk_size",
"chunk_overlap",
"encoding_name",
"model_name",
)
ret = {k: v for k, v in self.__dict__.items() if k in params}
return ret
[docs]
@classmethod
def from_dict(cls, d: dict[str, Any]) -> "LangChainChunker":
"""Create an instance from the dictionary."""
return cls(**d)
def _set_document_id_in_metadata_if_missing(
self, documents: Iterable[Document]
) -> None:
"""
Sets "document_id" in the metadata if it is missing.
The document_id is the hash of the document's content.
:param documents: sequence of documents
:type documents: Iterable[langchain_core.documents.Document]
:return: None
"""
for doc in documents:
if "document_id" not in doc.metadata:
doc.metadata["document_id"] = str(hash(doc.page_content))
def _set_sequence_number_in_metadata(
self, chunks: list[Document]
) -> list[Document]:
"""
Sets "sequence_number" in the metadata, sorted by chunks' "start_index".
:param chunks: sequence of chunks of documents that contain context in a text format
:type chunks: list[langchain_core.documents.Document]
:return: chunks: list of updated chunks, sorted by document_id and sequence_number
:type chunks: list[langchain_core.documents.Document]
"""
# sort chunks by start_index for each document_id
sorted_chunks = sorted(
chunks, key=lambda x: (x.metadata["document_id"], x.metadata["start_index"])
)
document_sequence: dict[str, int] = {}
for chunk in sorted_chunks:
doc_id = chunk.metadata["document_id"]
prev_seq_num = document_sequence.get(doc_id, 0)
seq_num = prev_seq_num + 1
document_sequence[doc_id] = seq_num
chunk.metadata["sequence_number"] = seq_num
return sorted_chunks
[docs]
def split_documents(self, documents: Sequence[Document]) -> list[Document]:
"""
Split series of documents into smaller chunks based on the provided
chunker settings. Each chunk has metadata that includes the document_id,
sequence_number, and start_index.
:param documents: sequence of elements that contain context in a text format
:type documents: Sequence[langchain_core.documents.Document]
:return: list of documents split into smaller ones, having less content
:rtype: list[langchain_core.documents.Document]
"""
with DisableWarningsLogger():
self._set_document_id_in_metadata_if_missing(documents)
chunks = self._text_splitter.split_documents(documents)
sorted_chunks = self._set_sequence_number_in_metadata(chunks)
return sorted_chunks