Source code for ibm_watsonx_ai.foundation_models.inference.model_inference

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2023-2024.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------
from __future__ import annotations

from typing import TYPE_CHECKING, Generator, cast, overload, Literal
from enum import Enum
import warnings

import httpx

from ibm_watsonx_ai.wml_client_error import (
    WMLClientError,
    ParamOutOfRange,
    InvalidMultipleArguments,
    MissingExtension,
)
from ibm_watsonx_ai._wrappers.requests import (
    get_httpx_client,
    get_async_client,
    get_httpx_client_transport,
    get_httpx_async_client_transport,
)
from ibm_watsonx_ai.messages.messages import Messages
from ibm_watsonx_ai.foundation_models.schema import (
    TextChatParameters,
    TextGenParameters,
)
import ibm_watsonx_ai._wrappers.requests as requests
from .base_model_inference import BaseModelInference, _RETRY_STATUS_CODES
from .fm_model_inference import FMModelInference
from .deployment_model_inference import DeploymentModelInference

if TYPE_CHECKING:
    from ibm_watsonx_ai import APIClient, Credentials
    from langchain_ibm import WatsonxLLM


[docs] class ModelInference(BaseModelInference): """Instantiate the model interface. .. hint:: To use the ModelInference class with LangChain, use the :func:`WatsonxLLM <langchain_ibm.WatsonxLLM>` wrapper. :param model_id: type of model to use :type model_id: str, optional :param deployment_id: ID of tuned model's deployment :type deployment_id: str, optional :param credentials: credentials for the Watson Machine Learning instance :type credentials: Credentials or dict, optional :param params: parameters to use during request generation :type params: dict, TextGenParameters, TextChatParameters, optional :param project_id: ID of the Watson Studio project :type project_id: str, optional :param space_id: ID of the Watson Studio space :type space_id: str, optional :param verify: You can pass one of the following as verify: * the path to a CA_BUNDLE file * the path of directory with certificates of trusted CAs * `True` - default path to truststore will be taken * `False` - no verification will be made :type verify: bool or str, optional :param api_client: initialized APIClient object with a set project ID or space ID. If passed, ``credentials`` and ``project_id``/``space_id`` are not required. :type api_client: APIClient, optional :param validate: Model ID validation, defaults to True :type validate: bool, optional :param persistent_connection: Whether to keep persistent connection when evaluating `generate`, `generate_text` or `tokenize` methods. This parameter is only applicable for the mentioned methods when the prompt is a str type. To close the connection, run `model.close_persistent_connection()`, defaults to True. Added in 1.1.2. :type persistent_connection: bool, optional .. note:: * You must provide one of these parameters: [``model_id``, ``deployment_id``] * When the ``credentials`` parameter is passed, you must provide one of these parameters: [``project_id``, ``space_id``]. .. hint:: You can copy the project_id from the Project's Manage tab (Project -> Manage -> General -> Details). **Example:** .. code-block:: python from ibm_watsonx_ai import Credentials from ibm_watsonx_ai.foundation_models import ModelInference from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes, DecodingMethods # To display example params enter GenParams().get_example_values() generate_params = { GenParams.MAX_NEW_TOKENS: 25 } model_inference = ModelInference( model_id=ModelTypes.FLAN_UL2, params=generate_params, credentials=Credentials( api_key = "***", url = "https://us-south.ml.cloud.ibm.com"), project_id="*****" ) .. code-block:: python from ibm_watsonx_ai.foundation_models import ModelInference from ibm_watsonx_ai import Credentials deployment_inference = ModelInference( deployment_id="<ID of deployed model>", credentials=Credentials( api_key = "***", url = "https://us-south.ml.cloud.ibm.com"), project_id="*****" ) """ def __init__( self, *, model_id: str | None = None, deployment_id: str | None = None, params: dict | TextChatParameters | TextGenParameters | None = None, credentials: dict | Credentials | None = None, project_id: str | None = None, space_id: str | None = None, verify: bool | str | None = None, api_client: APIClient | None = None, validate: bool = True, persistent_connection: bool = True, ) -> None: self.model_id = model_id if isinstance(self.model_id, Enum): self.model_id = self.model_id.value self.deployment_id = deployment_id if self.model_id and self.deployment_id: raise InvalidMultipleArguments( params_names_list=["model_id", "deployment_id"], reason="Both arguments were provided.", ) elif not self.model_id and not self.deployment_id: raise InvalidMultipleArguments( params_names_list=["model_id", "deployment_id"], reason="None of the arguments were provided.", ) self.params = params ModelInference._validate_type( params, "params", [dict, TextChatParameters, TextGenParameters], False, True ) if credentials: from ibm_watsonx_ai import APIClient self.set_api_client(APIClient(credentials, verify=verify)) elif api_client: self.set_api_client(api_client) else: raise InvalidMultipleArguments( params_names_list=["credentials", "api_client"], reason="None of the arguments were provided.", ) if space_id: self._client.set.default_space(space_id) elif project_id: self._client.set.default_project(project_id) elif not api_client: raise InvalidMultipleArguments( params_names_list=["space_id", "project_id"], reason="None of the arguments were provided.", ) if not self._client.CLOUD_PLATFORM_SPACES and self._client.CPD_version < 4.8: raise WMLClientError(error_msg="Operation is unsupported for this release.") self._inference: BaseModelInference if self.model_id: self._inference = FMModelInference( model_id=self.model_id, api_client=self._client, params=self.params, validate=validate, persistent_connection=persistent_connection, ) else: self.deployment_id = cast(str, self.deployment_id) self._inference = DeploymentModelInference( deployment_id=self.deployment_id, api_client=self._client, params=self.params, persistent_connection=persistent_connection, )
[docs] def get_details(self) -> dict: """Get the details of a model interface :return: details of the model or deployment :rtype: dict **Example:** .. code-block:: python model_inference.get_details() """ return self._inference.get_details()
[docs] def chat( self, messages: list[dict], params: dict | TextChatParameters | None = None, tools: list | None = None, tool_choice: dict | None = None, tool_choice_option: Literal["none", "auto"] | None = None, ) -> dict: """ Given a list of messages comprising a conversation, the model will return a response. :param messages: The messages for this chat session. :type messages: list[dict] :param params: meta props for chat generation, use ``ibm_watsonx_ai.foundation_models.schema.TextChatParameters.show()`` :type params: dict, TextChatParameters, optional :param tools: Tool functions that can be called with the response. :type tools: list :param tool_choice: Specifying a particular tool via {"type": "function", "function": {"name": "my_function"}} forces the model to call that tool. :type tool_choice: dict, optional :param tool_choice_option: Tool choice option :type tool_choice_option: Literal["none", "auto"], optional :return: scoring result containing generated chat content. :rtype: dict **Example:** .. code-block:: python messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"} ] generated_response = model.chat(messages=messages) # Print all response print(generated_response) # Print only content print(response['choices'][0]['message']['content']) """ self._validate_type(messages, "messages", list, True) self._validate_type(params, "params", [dict, TextChatParameters], False, True) if self.model_id is None: raise WMLClientError( Messages.get_message(message_id="chat_deployment_scenario") ) return self._inference.chat( messages=messages, params=params, tools=tools, tool_choice=tool_choice, tool_choice_option=tool_choice_option, )
[docs] def chat_stream( self, messages: list[dict], params: dict | TextChatParameters | None = None, tools: list | None = None, tool_choice: dict | None = None, tool_choice_option: Literal["none", "auto"] | None = None, ) -> Generator: """ Given a list of messages comprising a conversation, the model will return a response in stream. :param messages: The messages for this chat session. :type messages: list[dict] :param params: meta props for chat generation, use ``ibm_watsonx_ai.foundation_models.schema.TextChatParameters.show()`` :type params: dict, TextChatParameters, optional :param tools: Tool functions that can be called with the response. :type tools: list :param tool_choice: Specifying a particular tool via {"type": "function", "function": {"name": "my_function"}} forces the model to call that tool. :type tool_choice: dict, optional :param tool_choice_option: Tool choice option :type tool_choice_option: Literal["none", "auto"], optional :return: scoring result containing generated chat content. :rtype: generator **Example:** .. code-block:: python messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"} ] generated_response = model.chat_stream(messages=messages) for chunk in generated_response: print(chunk['choices'][0]['delta'].get('content', ''), end='', flush=True) """ self._validate_type(messages, "messages", list, True) self._validate_type(params, "params", [dict, TextChatParameters], False, True) if self.model_id is None: raise WMLClientError( Messages.get_message(message_id="chat_deployment_scenario") ) return self._inference.chat_stream( messages=messages, params=params, tools=tools, tool_choice=tool_choice, tool_choice_option=tool_choice_option, )
[docs] async def achat( self, messages: list[dict], params: dict | TextChatParameters | None = None, tools: list | None = None, tool_choice: dict | None = None, tool_choice_option: Literal["none", "auto"] | None = None, ) -> dict: """ Given a list of messages comprising a conversation with a chat model in an asynchronous manner. :param messages: The messages for this chat session. :type messages: list[dict] :param params: meta props for chat generation, use ``ibm_watsonx_ai.foundation_models.schema.TextChatParameters.show()`` :type params: dict, TextChatParameters, optional :param tools: Tool functions that can be called with the response. :type tools: list :param tool_choice: Specifying a particular tool via {"type": "function", "function": {"name": "my_function"}} forces the model to call that tool. :type tool_choice: dict, optional :param tool_choice_option: Tool choice option :type tool_choice_option: Literal["none", "auto"], optional :return: scoring result containing generated chat content. :rtype: dict **Example:** .. code-block:: python messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"} ] generated_response = await model.achat(messages=messages) # Print all response print(generated_response) # Print only content print(response['choices'][0]['message']['content']) """ self._validate_type(messages, "messages", list, True) self._validate_type(params, "params", [dict, TextChatParameters], False, True) if self.model_id is None: raise WMLClientError( Messages.get_message(message_id="chat_deployment_scenario") ) return await self._inference.achat( messages=messages, params=params, tools=tools, tool_choice=tool_choice, tool_choice_option=tool_choice_option, )
@overload def generate( self, prompt: str | list | None = ..., params: dict | TextGenParameters | None = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., async_mode: Literal[False] = ..., validate_prompt_variables: bool = ..., ) -> dict | list[dict]: ... @overload def generate( self, prompt: str | list | None, params: dict | TextGenParameters | None, guardrails: bool, guardrails_hap_params: dict | None, guardrails_pii_params: dict | None, concurrency_limit: int, async_mode: Literal[True], validate_prompt_variables: bool, ) -> Generator: ... @overload def generate( self, prompt: str | list | None = ..., params: dict | TextGenParameters | None = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., async_mode: bool = ..., validate_prompt_variables: bool = ..., ) -> dict | list[dict] | Generator: ...
[docs] def generate( self, prompt: str | list | None = None, params: dict | TextGenParameters | None = None, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, concurrency_limit: int = 10, async_mode: bool = False, validate_prompt_variables: bool = True, ) -> dict | list[dict] | Generator: """Generates a completion text as generated_text after getting a text prompt as input and parameters for the selected model (model_id) or deployment (deployment_id). For prompt template deployment, `prompt` should be None. :param params: MetaProps for text generation, use ``ibm_watsonx_ai.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict, TextGenParameters, optional :param concurrency_limit: number of requests to be sent in parallel, max is 10 :type concurrency_limit: int :param prompt: prompt string or list of strings. If list of strings is passed, requests will be managed in parallel with the rate of concurency_limit, defaults to None :type prompt: (str | list | None), optional :param guardrails: If True, the detection filter for potentially hateful, abusive, and/or profane language (HAP) is toggle on for both prompt and generated text, defaults to False :type guardrails: bool :param guardrails_hap_params: MetaProps for HAP moderations, use ``ibm_watsonx_ai.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type guardrails_hap_params: dict :param async_mode: If True, yields results asynchronously (using a generator). In this case, both prompt and generated text will be concatenated in the final response - under `generated_text`, defaults to False :type async_mode: bool :param validate_prompt_variables: If True, prompt variables provided in `params` are validated with the ones in the Prompt Template Asset. This parameter is only applicable in a Prompt Template Asset deployment scenario and should not be changed for different cases, defaults to True :type validate_prompt_variables: bool, optional :return: scoring result the contains the generated content :rtype: dict **Example:** .. code-block:: python q = "What is 1 + 1?" generated_response = model_inference.generate(prompt=q) print(generated_response['results'][0]['generated_text']) """ self._validate_type(params, "params", [dict, TextGenParameters], False, True) self._validate_type( concurrency_limit, "concurrency_limit", [int, float], False, raise_error_for_list=True, ) if isinstance(concurrency_limit, float): # convert float (ex. 10.0) to int concurrency_limit = int(concurrency_limit) if concurrency_limit > 10 or concurrency_limit < 1: raise ParamOutOfRange( param_name="concurrency_limit", value=concurrency_limit, min=1, max=10 ) if async_mode: warning_async_mode = ( "In this mode, the results will be returned in the order in which the server returns the responses. " "Please notice that it does not support non-blocking requests scheduling. " "To use non-blocking native async inference method you may use `ModelInference.agenerate(...)`" ) warnings.warn(warning_async_mode) return self._inference.generate( prompt=prompt, params=params, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, concurrency_limit=concurrency_limit, async_mode=async_mode, validate_prompt_variables=validate_prompt_variables, )
async def _agenerate_single( # type: ignore[override] self, prompt: str | None = None, params: dict | TextGenParameters | None = None, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, ) -> dict: """ Given a text prompt as input, and parameters the selected inference will return async generator with response. """ self._validate_type(params, "params", [dict, TextGenParameters], False, True) return await self._inference._agenerate_single( prompt=prompt, params=params, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, ) @overload def generate_text( self, prompt: str | None = ..., params: dict | TextGenParameters | None = ..., raw_response: Literal[False] = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., validate_prompt_variables: bool = ..., ) -> str: ... @overload def generate_text( self, prompt: list, params: dict | TextGenParameters | None = ..., raw_response: Literal[False] = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., validate_prompt_variables: bool = ..., ) -> list[str]: ... @overload def generate_text( self, prompt: str | list | None, params: dict | TextGenParameters | None, raw_response: Literal[True], guardrails: bool, guardrails_hap_params: dict | None, guardrails_pii_params: dict | None, concurrency_limit: int, validate_prompt_variables: bool, ) -> list[dict] | dict: ... @overload def generate_text( self, prompt: str | list | None, params: dict | TextGenParameters | None, raw_response: bool, guardrails: bool, guardrails_hap_params: dict | None, guardrails_pii_params: dict | None, concurrency_limit: int, validate_prompt_variables: bool, ) -> str | list | dict: ...
[docs] def generate_text( self, prompt: str | list | None = None, params: dict | TextGenParameters | None = None, raw_response: bool = False, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, concurrency_limit: int = 10, validate_prompt_variables: bool = True, ) -> str | list | dict: """Generates a completion text as generated_text after getting a text prompt as input and parameters for the selected model (model_id). For prompt template deployment, `prompt` should be None. :param params: MetaProps for text generation, use ``ibm_watsonx_ai.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict, TextGenParameters, optional :param concurrency_limit: number of requests to be sent in parallel, max is 10 :type concurrency_limit: int :param prompt: prompt string or list of strings. If list of strings is passed, requests will be managed in parallel with the rate of concurency_limit, defaults to None :type prompt: (str | list | None), optional :param guardrails: If True, the detection filter for potentially hateful, abusive, and/or profane language (HAP) is toggle on for both prompt and generated text, defaults to False If HAP is detected, then the `HAPDetectionWarning` is issued :type guardrails: bool :param guardrails_hap_params: MetaProps for HAP moderations, use ``ibm_watsonx_ai.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type guardrails_hap_params: dict :param raw_response: returns the whole response object :type raw_response: bool, optional :param validate_prompt_variables: If True, the prompt variables provided in `params` are validated with the ones in the Prompt Template Asset. This parameter is only applicable in a Prompt Template Asset deployment scenario and should not be changed for different cases, defaults to True :type validate_prompt_variables: bool :return: generated content :rtype: str | list | dict .. note:: By default, only the first occurrence of `HAPDetectionWarning` is displayed. To enable printing all warnings of this category, use: .. code-block:: python import warnings from ibm_watsonx_ai.foundation_models.utils import HAPDetectionWarning warnings.filterwarnings("always", category=HAPDetectionWarning) **Example:** .. code-block:: python q = "What is 1 + 1?" generated_text = model_inference.generate_text(prompt=q) print(generated_text) """ metadata = ModelInference.generate( self, prompt=prompt, params=params, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, concurrency_limit=concurrency_limit, validate_prompt_variables=validate_prompt_variables, ) if raw_response: return metadata else: if isinstance(prompt, list): return [ self._return_guardrails_stats(single_response)["generated_text"] for single_response in metadata ] else: return self._return_guardrails_stats(metadata)["generated_text"] # type: ignore[arg-type]
[docs] def generate_text_stream( self, prompt: str | None = None, params: dict | TextGenParameters | None = None, raw_response: bool = False, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, validate_prompt_variables: bool = True, ) -> Generator: """Generates a streamed text as generate_text_stream after getting a text prompt as input and parameters for the selected model (model_id). For prompt template deployment, `prompt` should be None. :param params: MetaProps for text generation, use ``ibm_watsonx_ai.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict, TextGenParameters, optional :param prompt: prompt string, defaults to None :type prompt: str, optional :param raw_response: yields the whole response object :type raw_response: bool, optional :param guardrails: If True, the detection filter for potentially hateful, abusive, and/or profane language (HAP) is toggle on for both prompt and generated text, defaults to False If HAP is detected, then the `HAPDetectionWarning` is issued :type guardrails: bool :param guardrails_hap_params: MetaProps for HAP moderations, use ``ibm_watsonx_ai.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type guardrails_hap_params: dict :param validate_prompt_variables: If True, the prompt variables provided in `params` are validated with the ones in the Prompt Template Asset. This parameter is only applicable in a Prompt Template Asset deployment scenario and should not be changed for different cases, defaults to True :type validate_prompt_variables: bool :return: scoring result that contains the generated content :rtype: generator .. note:: By default, only the first occurrence of `HAPDetectionWarning` is displayed. To enable printing all warnings of this category, use: .. code-block:: python import warnings from ibm_watsonx_ai.foundation_models.utils import HAPDetectionWarning warnings.filterwarnings("always", category=HAPDetectionWarning) **Example:** .. code-block:: python q = "Write an epigram about the sun" generated_response = model_inference.generate_text_stream(prompt=q) for chunk in generated_response: print(chunk, end='', flush=True) """ self._validate_type(params, "params", [dict, TextGenParameters], False, True) return self._inference.generate_text_stream( prompt=prompt, params=params, raw_response=raw_response, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, validate_prompt_variables=validate_prompt_variables, )
[docs] def tokenize(self, prompt: str, return_tokens: bool = False) -> dict: """ The text tokenize operation allows you to check the conversion of provided input to tokens for a given model. It splits text into words or sub-words, which then are converted to IDs through a look-up table (vocabulary). Tokenization allows the model to have a reasonable vocabulary size. .. note:: The tokenization method is available only for base models and is not supported for deployments. :param prompt: prompt string, defaults to None :type prompt: str, optional :param return_tokens: parameter for text tokenization, defaults to False :type return_tokens: bool :return: result of tokenizing the input string :rtype: dict **Example:** .. code-block:: python q = "Write an epigram about the moon" tokenized_response = model_inference.tokenize(prompt=q, return_tokens=True) print(tokenized_response["result"]) """ return self._inference.tokenize(prompt=prompt, return_tokens=return_tokens)
[docs] def to_langchain(self) -> WatsonxLLM: """ :return: WatsonxLLM wrapper for watsonx foundation models :rtype: WatsonxLLM **Example:** .. code-block:: python from langchain import PromptTemplate from langchain.chains import LLMChain from ibm_watsonx_ai import Credentials from ibm_watsonx_ai.foundation_models import ModelInference from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes flan_ul2_model = ModelInference( model_id=ModelTypes.FLAN_UL2, credentials=Credentials( api_key = "***", url = "https://us-south.ml.cloud.ibm.com"), project_id="*****" ) prompt_template = "What color is the {flower}?" llm_chain = LLMChain(llm=flan_ul2_model.to_langchain(), prompt=PromptTemplate.from_template(prompt_template)) llm_chain('sunflower') .. code-block:: python from langchain import PromptTemplate from langchain.chains import LLMChain from ibm_watsonx_ai import Credentials from ibm_watsonx_ai.foundation_models import ModelInference from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes deployed_model = ModelInference( deployment_id="<ID of deployed model>", credentials=Credentials( api_key = "***", url = "https://us-south.ml.cloud.ibm.com"), space_id="*****" ) prompt_template = "What color is the {car}?" llm_chain = LLMChain(llm=deployed_model.to_langchain(), prompt=PromptTemplate.from_template(prompt_template)) llm_chain('sunflower') """ try: from langchain_ibm import WatsonxLLM except ImportError: raise MissingExtension("langchain_ibm") return WatsonxLLM(watsonx_model=self)
[docs] def get_identifying_params(self) -> dict: """Represent Model Inference's setup in dictionary""" return self._inference.get_identifying_params()
[docs] def close_persistent_connection(self) -> None: """Only applicable if persistent_connection was set to True in ModelInference initialization.""" if self._inference._persistent_connection and isinstance( self._inference._http_client, httpx.Client ): self._inference._http_client.close() self._inference._http_client = get_httpx_client( transport=get_httpx_client_transport( _retry_status_codes=_RETRY_STATUS_CODES, verify=self._client.credentials.verify, limits=requests.HTTPX_DEFAULT_LIMIT, ) )
[docs] def set_api_client(self, api_client: APIClient) -> None: """ Set or refresh the APIClient object associated with ModelInference object. :param api_client: initialized APIClient object with a set project ID or space ID. :type api_client: APIClient, optional **Example:** .. code-block:: python api_client = APIClient(credentials=..., space_id=...) model_inference.set_api_client(api_client=api_client) """ self._client = api_client if hasattr(self, "_inference"): self._inference._client = api_client
[docs] async def agenerate( self, prompt: str | None = None, params: dict | None = None, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, validate_prompt_variables: bool = True, ) -> dict: """Generate a response in an asynchronous manner. :param prompt: prompt string, defaults to None :type prompt: str | None, optional :param params: MetaProps for text generation, use ``ibm_watsonx_ai.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames, defaults to None :type params: dict | None, optional :param guardrails: If True, the detection filter for potentially hateful, abusive, and/or profane language (HAP) is toggle on for both prompt and generated text, defaults to False If HAP is detected, then the `HAPDetectionWarning` is issued :type guardrails: bool, optional :param guardrails_hap_params: MetaProps for HAP moderations, use ``ibm_watsonx_ai.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type guardrails_hap_params: dict | None, optional :param validate_prompt_variables: If True, the prompt variables provided in `params` are validated with the ones in the Prompt Template Asset. This parameter is only applicable in a Prompt Template Asset deployment scenario and should not be changed for different cases, defaults to True :type validate_prompt_variables: bool, optional :return: raw response that contains the generated content :rtype: dict """ self._validate_type(params, "params", dict, False) return await self._inference._agenerate_single( prompt=prompt, params=params, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, validate_prompt_variables=validate_prompt_variables, )
[docs] async def aclose_persistent_connection(self) -> None: """Only applicable if persistent_connection was set to True in the ModelInference initialization.""" if self._inference._persistent_connection and isinstance( self._inference._async_http_client, httpx.AsyncClient ): await self._inference._async_http_client.aclose() self._inference._async_http_client = get_async_client( transport=get_httpx_async_client_transport( _retry_status_codes=_RETRY_STATUS_CODES, verify=self._client.credentials.verify, limits=requests.HTTPX_DEFAULT_LIMIT, ) )