Source code for ibm_watsonx_ai.foundation_models.model

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2023-2025.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------
from __future__ import annotations

from warnings import warn, catch_warnings, simplefilter

from typing import TYPE_CHECKING, Generator, overload, Literal

from ibm_watsonx_ai.foundation_models.inference import ModelInference
from ibm_watsonx_ai.wml_client_error import MissingExtension
from ibm_watsonx_ai.foundation_models.schema import (
    TextChatParameters,
    TextGenParameters,
)

if TYPE_CHECKING:
    from langchain_ibm import WatsonxLLM
    from ibm_watsonx_ai import Credentials


[docs] class Model(ModelInference): """Instantiate the model interface. .. deprecated:: 1.1.21 Use :func:`ModelInference() <ibm_watsonx_ai.foundation_models.inference.ModelInference>` instead. .. hint:: To use the Model class with LangChain, use the :func:`to_langchain() <ibm_watsonx_ai.foundation_models.Model.to_langchain>` function. :param model_id: type of model to use :type model_id: str :param credentials: credentials for the Watson Machine Learning instance :type credentials: Credentials or dict :param params: parameters to use during generate requests :type params: dict, TextGenParameters, TextChatParameters, optional :param project_id: ID of the Watson Studio project :type project_id: str, optional :param space_id: ID of the Watson Studio space :type space_id: str, optional :param verify: You can pass one of following as verify: * the path to a CA_BUNDLE file * the path of a directory with certificates of trusted CAs * `True` - default path to truststore will be taken * `False` - no verification will be made :type verify: bool or str, optional :param validate: model ID validation, defaults to True :type validate: bool, optional .. note:: One of these parameters is required: ['project_id ', 'space_id']. .. hint:: You can copy the project_id from the Project's Manage tab (Project -> Manage -> General -> Details). **Example:** .. code-block:: python from ibm_watsonx_ai.foundation_models import Model from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes, DecodingMethods # To display example params enter GenParams().get_example_values() generate_params = { GenParams.MAX_NEW_TOKENS: 25 } model = Model( model_id=ModelTypes.FLAN_UL2, params=generate_params, credentials=Credentials( api_key = IAM_API_KEY, url = "https://us-south.ml.cloud.ibm.com"), project_id="*****" ) """ def __init__( self, model_id: str, credentials: Credentials | dict, params: dict | TextChatParameters | TextGenParameters | None = None, project_id: str | None = None, space_id: str | None = None, verify: str | bool | None = None, validate: bool = True, ) -> None: with catch_warnings(): simplefilter("default", category=DeprecationWarning) warn( ( "The `Model` class is deprecated and will be removed in a future release. " "Please use the `ModelInference` class instead. " "To update your imports, use: `from ibm_watsonx_ai.foundation_models import ModelInference`." ), category=DeprecationWarning, ) ModelInference.__init__( self, model_id=model_id, credentials=credentials, params=params, project_id=project_id, space_id=space_id, verify=verify, validate=validate, )
[docs] def get_details(self) -> dict: """Get the model's details. :return: model's details :rtype: dict **Example:** .. code-block:: python model.get_details() """ return super().get_details()
[docs] def to_langchain(self) -> WatsonxLLM: """ :return: WatsonxLLM wrapper for watsonx foundation models :rtype: WatsonxLLM **Example:** .. code-block:: python from langchain import PromptTemplate from langchain.chains import LLMChain from ibm_watsonx_ai.foundation_models import Model from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes flan_ul2_model = Model( model_id=ModelTypes.FLAN_UL2, credentials=Credentials( api_key = IAM_API_KEY, url = "https://us-south.ml.cloud.ibm.com"), project_id="*****" ) prompt_template = "What color is the {flower}?" llm_chain = LLMChain(llm=flan_ul2_model.to_langchain(), prompt=PromptTemplate.from_template(prompt_template)) llm_chain('sunflower') """ try: from langchain_ibm import WatsonxLLM except ImportError: raise MissingExtension("langchain_ibm") return WatsonxLLM(watsonx_model=self)
@overload # type: ignore[override] def generate( self, prompt: str | list | None = ..., params: dict | TextGenParameters | None = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., async_mode: Literal[False] = ..., ) -> dict | list[dict]: ... @overload # type: ignore[override] def generate( self, prompt: str | list | None, params: dict | TextGenParameters | None, guardrails: bool, guardrails_hap_params: dict | None, guardrails_pii_params: dict | None, concurrency_limit: int, async_mode: Literal[True], ) -> Generator: ... @overload # type: ignore[override] def generate( self, prompt: str | list | None = ..., params: dict | TextGenParameters | None = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., async_mode: bool = ..., ) -> dict | list[dict] | Generator: ...
[docs] def generate( # type: ignore[override] self, prompt: str | list | None = None, params: dict | TextGenParameters | None = None, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, concurrency_limit: int = 10, async_mode: bool = False, ) -> dict | list[dict] | Generator: """Generates a completion text as generated_text after getting a text prompt as input and parameters for the selected model (model_id). :param params: MetaProps for text generation, use ``ibm_watsonx_ai.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict, TextGenParameters, optional :param concurrency_limit: number of requests that will be sent in parallel, max is 10 :type concurrency_limit: int :param prompt: the prompt string or list of strings. If a list of strings is passed, requests will be managed in parallel with the rate of concurency_limit :type prompt: str, list :param guardrails: if True, the detection filter for potentially hateful, abusive, and/or profane language (HAP) is toggle on for both prompt and generated text, defaults to False :type guardrails: bool :param guardrails_hap_params: MetaProps for HAP moderations, use ``ibm_watsonx_ai.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type params: dict :param async_mode: if True, then yields results asynchronously using a generator. In this case, both prompt and generated text will be concatenated in the final response - under `generated_text`, defaults to False :type async_mode: bool :return: scoring result that contains the generated content :rtype: dict **Example:** .. code-block:: python q = "What is 1 + 1?" generated_response = model.generate(prompt=q) print(generated_response['results'][0]['generated_text']) """ return super().generate( prompt=prompt, params=params, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, concurrency_limit=concurrency_limit, async_mode=async_mode, validate_prompt_variables=True, # keep default value, changing not permitted )
@overload # type: ignore[override] def generate_text( self, prompt: str | None = ..., params: dict | TextGenParameters | None = ..., raw_response: Literal[False] = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., ) -> str: ... @overload # type: ignore[override] def generate_text( self, prompt: list, params: dict | TextGenParameters | None = ..., raw_response: Literal[False] = ..., guardrails: bool = ..., guardrails_hap_params: dict | None = ..., guardrails_pii_params: dict | None = ..., concurrency_limit: int = ..., ) -> list[str]: ... @overload # type: ignore[override] def generate_text( self, prompt: str | list | None, params: dict | TextGenParameters | None, raw_response: Literal[True], guardrails: bool, guardrails_hap_params: dict | None, guardrails_pii_params: dict | None, concurrency_limit: int, ) -> list[dict] | dict: ... @overload # type: ignore[override] def generate_text( self, prompt: str | list | None, params: dict | TextGenParameters | None, raw_response: bool, guardrails: bool, guardrails_hap_params: dict | None, guardrails_pii_params: dict | None, concurrency_limit: int, ) -> str | list | dict: ...
[docs] def generate_text( # type: ignore[override] self, prompt: str | list | None = None, params: dict | TextGenParameters | None = None, raw_response: bool = False, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, concurrency_limit: int = 10, ) -> str | list | dict: """Generates a completion text as generated_text after getting a text prompt as input and parameters for the selected model (model_id). :param params: MetaProps for text generation, use ``ibm_watsonx_ai.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict, TextGenParameters, optional :param concurrency_limit: number of requests to be sent in parallel, max is 10 :type concurrency_limit: int :param prompt: the prompt string or list of strings. If a list of strings is passed, requests will be managed in parallel with the rate of concurency_limit :type prompt: str, list :param raw_response: return the whole response object :type raw_response: bool, optional :param guardrails: if True, the detection filter for potentially hateful, abusive, and/or profane language (HAP) is toggle on for both prompt and generated text, defaults to False :type guardrails: bool :param guardrails_hap_params: MetaProps for HAP moderations, use ``ibm_watsonx_ai.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type params: dict :return: generated content :rtype: str or dict **Example:** .. code-block:: python q = "What is 1 + 1?" generated_text = model.generate_text(prompt=q) print(generated_text) """ return super().generate_text( prompt=prompt, params=params, raw_response=raw_response, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, concurrency_limit=concurrency_limit, validate_prompt_variables=True, # keep default value, changing not permitted in this scenario )
[docs] def generate_text_stream( # type: ignore[override] self, prompt: str | None = None, params: dict | TextGenParameters | None = None, raw_response: bool = False, guardrails: bool = False, guardrails_hap_params: dict | None = None, guardrails_pii_params: dict | None = None, ) -> Generator: """Generates a streamed text as generate_text_stream after getting a text prompt as input and parameters for the selected model (model_id). :param params: MetaProps for text generation, use ``ibm_watsonx_ai.metanames.GenTextParamsMetaNames().show()`` to view the list of MetaNames :type params: dict, TextGenParameters, optional :param prompt: the prompt string :type prompt: str, :param raw_response: yields the whole response object :type raw_response: bool, optional :param guardrails: If True, the detection filter for potentially hateful, abusive, and/or profane language (HAP) is toggle on for both prompt and generated text, defaults to False :type guardrails: bool :param guardrails_hap_params: MetaProps for HAP moderations, use ``ibm_watsonx_ai.metanames.GenTextModerationsMetaNames().show()`` to view the list of MetaNames :type params: dict :return: scoring result that contains the generated content :rtype: generator **Example:** .. code-block:: python q = "Write an epigram about the sun" generated_response = model.generate_text_stream(prompt=q) for chunk in generated_response: print(chunk, end='', flush=True) """ return super().generate_text_stream( prompt=prompt, params=params, raw_response=raw_response, guardrails=guardrails, guardrails_hap_params=guardrails_hap_params, guardrails_pii_params=guardrails_pii_params, validate_prompt_variables=True, # keep default value, changing not permitted in this scenario )
[docs] def tokenize(self, prompt: str, return_tokens: bool = False) -> dict: """ The text tokenize operation allows you to check the conversion of provided input to tokens for a given model. It splits text into words or sub-words, which are are converted to IDs through a look-up table (vocabulary). Tokenization allows the model to have a reasonable vocabulary size. :param prompt: prompt string :type prompt: str :param return_tokens: parameter for text tokenization, defaults to False :type return_tokens: bool :return: result of tokenizing the input string :rtype: dict **Example:** .. code-block:: python q = "Write an epigram about the moon" tokenized_response = model.tokenize(prompt=q, return_tokens=True) print(tokenized_response["result"]) """ return super().tokenize(prompt=prompt, return_tokens=return_tokens)
[docs] def chat( self, messages: list[dict], params: dict | TextChatParameters | None = None, tools: list | None = None, tool_choice: dict | None = None, tool_choice_option: Literal["none", "auto"] | None = None, ) -> dict: """ Given a list of messages comprising a conversation, the model will return a response. :param messages: The messages for this chat session. :type messages: list[dict] :param params: meta props for chat generation, use ``ibm_watsonx_ai.foundation_models.schema.TextChatParameters.show()`` :type params: dict, TextChatParameters, optional :param tools: Tool functions that can be called with the response. :type tools: list :param tool_choice: Specifying a particular tool via {"type": "function", "function": {"name": "my_function"}} forces the model to call that tool. :type tool_choice: dict, optional :param tool_choice_option: Tool choice option :type tool_choice_option: Literal["none", "auto"], optional :return: scoring result containing generated chat content. :rtype: dict **Example:** .. code-block:: python messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"} ] generated_response = model.chat(messages=messages) # Print all response print(generated_response) # Print only content print(response['choices'][0]['message']['content']) """ return super().chat( messages=messages, params=params, tools=tools, tool_choice=tool_choice, tool_choice_option=tool_choice_option, )
[docs] def chat_stream( self, messages: list[dict], params: dict | TextChatParameters | None = None, tools: list | None = None, tool_choice: dict | None = None, tool_choice_option: Literal["none", "auto"] | None = None, ) -> Generator: """ Given a list of messages comprising a conversation, the model will return a response in stream. :param messages: The messages for this chat session. :type messages: list[dict] :param params: meta props for chat generation, use ``ibm_watsonx_ai.foundation_models.schema.TextChatParameters.show()`` :type params: dict, TextChatParameters, optional :param tools: Tool functions that can be called with the response. :type tools: list :param tool_choice: Specifying a particular tool via {"type": "function", "function": {"name": "my_function"}} forces the model to call that tool. :type tool_choice: dict, optional :param tool_choice_option: Tool choice option :type tool_choice_option: Literal["none", "auto"], optional :return: scoring result containing generated chat content. :rtype: generator **Example:** .. code-block:: python messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"} ] generated_response = model.chat_stream(messages=messages) for chunk in generated_response: print(chunk['choices'][0]['delta'].get('content', ''), end='', flush=True) """ return super().chat_stream( messages=messages, params=params, tools=tools, tool_choice=tool_choice, tool_choice_option=tool_choice_option, )